pandas.DataFrame.prod#
- DataFrame.prod(axis=0, skipna=True, numeric_only=False, min_count=0, **kwargs)[source]#
- Return the product of the values over the requested axis. - Parameters:
- axis{index (0), columns (1)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. - For DataFrames, specifying - axis=Nonewill apply the aggregation across both axes.- New in version 2.0.0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. Not implemented for Series. 
- min_countint, default 0
- The required number of valid values to perform the operation. If fewer than - min_countnon-NA values are present the result will be NA.
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- Series or scalar
 
 - See also - Series.sum
- Return the sum. 
- Series.min
- Return the minimum. 
- Series.max
- Return the maximum. 
- Series.idxmin
- Return the index of the minimum. 
- Series.idxmax
- Return the index of the maximum. 
- DataFrame.sum
- Return the sum over the requested axis. 
- DataFrame.min
- Return the minimum over the requested axis. 
- DataFrame.max
- Return the maximum over the requested axis. 
- DataFrame.idxmin
- Return the index of the minimum over the requested axis. 
- DataFrame.idxmax
- Return the index of the maximum over the requested axis. 
 - Examples - By default, the product of an empty or all-NA Series is - 1- >>> pd.Series([], dtype="float64").prod() 1.0 - This can be controlled with the - min_countparameter- >>> pd.Series([], dtype="float64").prod(min_count=1) nan - Thanks to the - skipnaparameter,- min_counthandles all-NA and empty series identically.- >>> pd.Series([np.nan]).prod() 1.0 - >>> pd.Series([np.nan]).prod(min_count=1) nan