pandas.DataFrame.min#
- DataFrame.min(axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
- Return the minimum of the values over the requested axis. - If you want the index of the minimum, use - idxmin. This is the equivalent of the- numpy.ndarraymethod- argmin.- Parameters:
- axis{index (0), columns (1)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. - For DataFrames, specifying - axis=Nonewill apply the aggregation across both axes.- New in version 2.0.0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. Not implemented for Series. 
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- Series or scalar
 
 - See also - Series.sum
- Return the sum. 
- Series.min
- Return the minimum. 
- Series.max
- Return the maximum. 
- Series.idxmin
- Return the index of the minimum. 
- Series.idxmax
- Return the index of the maximum. 
- DataFrame.sum
- Return the sum over the requested axis. 
- DataFrame.min
- Return the minimum over the requested axis. 
- DataFrame.max
- Return the maximum over the requested axis. 
- DataFrame.idxmin
- Return the index of the minimum over the requested axis. 
- DataFrame.idxmax
- Return the index of the maximum over the requested axis. 
 - Examples - >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 - >>> s.min() 0