pandas.core.window.ewm.ExponentialMovingWindow.cov#
- ExponentialMovingWindow.cov(other=None, pairwise=None, bias=False, numeric_only=False)[source]#
 Calculate the ewm (exponential weighted moment) sample covariance.
- Parameters:
 - otherSeries or DataFrame , optional
 If not supplied then will default to self and produce pairwise output.
- pairwisebool, default None
 If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
- biasbool, default False
 Use a standard estimation bias correction.
- numeric_onlybool, default False
 Include only float, int, boolean columns.
Added in version 1.5.0.
- Returns:
 - Series or DataFrame
 Return type is the same as the original object with
np.float64dtype.
See also
pandas.Series.ewmCalling ewm with Series data.
pandas.DataFrame.ewmCalling ewm with DataFrames.
pandas.Series.covAggregating cov for Series.
pandas.DataFrame.covAggregating cov for DataFrame.
Examples
>>> ser1 = pd.Series([1, 2, 3, 4]) >>> ser2 = pd.Series([10, 11, 13, 16]) >>> ser1.ewm(alpha=.2).cov(ser2) 0 NaN 1 0.500000 2 1.524590 3 3.408836 dtype: float64