pandas.read_sas#
- pandas.read_sas(filepath_or_buffer, *, format=None, index=None, encoding=None, chunksize=None, iterator=False, compression='infer')[source]#
 Read SAS files stored as either XPORT or SAS7BDAT format files.
- Parameters:
 - filepath_or_bufferstr, path object, or file-like object
 String, path object (implementing
os.PathLike[str]), or file-like object implementing a binaryread()function. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be:file://localhost/path/to/table.sas7bdat.- formatstr {‘xport’, ‘sas7bdat’} or None
 If None, file format is inferred from file extension. If ‘xport’ or ‘sas7bdat’, uses the corresponding format.
- indexidentifier of index column, defaults to None
 Identifier of column that should be used as index of the DataFrame.
- encodingstr, default is None
 Encoding for text data. If None, text data are stored as raw bytes.
- chunksizeint
 Read file chunksize lines at a time, returns iterator.
- iteratorbool, defaults to False
 If True, returns an iterator for reading the file incrementally.
- compressionstr or dict, default ‘infer’
 For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to
Nonefor no decompression. Can also be a dict with key'method'set to one of {'zip','gzip','bz2','zstd','xz','tar'} and other key-value pairs are forwarded tozipfile.ZipFile,gzip.GzipFile,bz2.BZ2File,zstandard.ZstdDecompressor,lzma.LZMAFileortarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary:compression={'method': 'zstd', 'dict_data': my_compression_dict}.Added in version 1.5.0: Added support for .tar files.
- Returns:
 - DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
 - or XportReader
 
Examples
>>> df = pd.read_sas("sas_data.sas7bdat")