pandas.DataFrame.asfreq¶
- 
DataFrame.asfreq(freq, method=None, how=None, normalize=False, fill_value=None)[source]¶
- Convert TimeSeries to specified frequency. - Optionally provide filling method to pad/backfill missing values. - Returns the original data conformed to a new index with the specified frequency. - resampleis more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.- Parameters: - freq : DateOffset object, or string - method : {‘backfill’/’bfill’, ‘pad’/’ffill’}, default None - Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): - ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid
- ‘backfill’ / ‘bfill’: use NEXT valid observation to fill
 - how : {‘start’, ‘end’}, default end - For PeriodIndex only, see PeriodIndex.asfreq - normalize : bool, default False - Whether to reset output index to midnight - fill_value: scalar, optional - Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). - New in version 0.20.0. - Returns: - converted : type of caller - See also - Notes - To learn more about the frequency strings, please see this link. - Examples - Start by creating a series with 4 one minute timestamps. - >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 - Upsample the series into 30 second bins. - >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 - Upsample again, providing a - fill value.- >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 - Upsample again, providing a - method.- >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0