pandas.DataFrame.to_gbq¶
- 
DataFrame.to_gbq(destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None)[source]¶
- Write a DataFrame to a Google BigQuery table. - The main method a user calls to export pandas DataFrame contents to Google BigQuery table. - Google BigQuery API Client Library v2 for Python is used. Documentation is available here - Authentication to the Google BigQuery service is via OAuth 2.0. - If “private_key” is not provided: - By default “application default credentials” are used. - If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name ‘pandas GBQ’. 
- If “private_key” is provided: - Service account credentials will be used to authenticate. 
 - Parameters: - dataframe : DataFrame - DataFrame to be written - destination_table : string - Name of table to be written, in the form ‘dataset.tablename’ - project_id : str - Google BigQuery Account project ID. - chunksize : int (default 10000) - Number of rows to be inserted in each chunk from the dataframe. - verbose : boolean (default True) - Show percentage complete - reauth : boolean (default False) - Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. - if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ - ‘fail’: If table exists, do nothing. ‘replace’: If table exists, drop it, recreate it, and insert data. ‘append’: If table exists, insert data. Create if does not exist. - private_key : str (optional) - Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host)