pandas.concat

pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)[source]

Concatenate pandas objects along a particular axis with optional set logic along the other axes.

Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Parameters:

objs : a sequence or mapping of Series, DataFrame, or Panel objects

If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised

axis : {0/’index’, 1/’columns’}, default 0

The axis to concatenate along

join : {‘inner’, ‘outer’}, default ‘outer’

How to handle indexes on other axis(es)

join_axes : list of Index objects

Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic

ignore_index : boolean, default False

If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.

keys : sequence, default None

If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

levels : list of sequences, default None

Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys

names : list, default None

Names for the levels in the resulting hierarchical index

verify_integrity : boolean, default False

Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

copy : boolean, default True

If False, do not copy data unnecessarily

Returns:

concatenated : type of objects

Notes

The keys, levels, and names arguments are all optional.

A walkthrough of how this method fits in with other tools for combining panda objects can be found here.

Examples

Combine two Series.

>>> s1 = pd.Series(['a', 'b'])
>>> s2 = pd.Series(['c', 'd'])
>>> pd.concat([s1, s2])
0    a
1    b
0    c
1    d
dtype: object

Clear the existing index and reset it in the result by setting the ignore_index option to True.

>>> pd.concat([s1, s2], ignore_index=True)
0    a
1    b
2    c
3    d
dtype: object

Add a hierarchical index at the outermost level of the data with the keys option.

>>> pd.concat([s1, s2], keys=['s1', 's2',])
s1  0    a
    1    b
s2  0    c
    1    d
dtype: object

Label the index keys you create with the names option.

>>> pd.concat([s1, s2], keys=['s1', 's2'],
...           names=['Series name', 'Row ID'])
Series name  Row ID
s1           0         a
             1         b
s2           0         c
             1         d
dtype: object

Combine two DataFrame objects with identical columns.

>>> df1 = pd.DataFrame([['a', 1], ['b', 2]],
...                    columns=['letter', 'number'])
>>> df1
  letter  number
0      a       1
1      b       2
>>> df2 = pd.DataFrame([['c', 3], ['d', 4]],
...                    columns=['letter', 'number'])
>>> df2
  letter  number
0      c       3
1      d       4
>>> pd.concat([df1, df2])
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4

Combine DataFrame objects with overlapping columns and return everything. Columns outside the intersection will be filled with NaN values.

>>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']],
...                    columns=['letter', 'number', 'animal'])
>>> df3
  letter  number animal
0      c       3    cat
1      d       4    dog
>>> pd.concat([df1, df3])
  animal letter  number
0    NaN      a       1
1    NaN      b       2
0    cat      c       3
1    dog      d       4

Combine DataFrame objects with overlapping columns and return only those that are shared by passing inner to the join keyword argument.

>>> pd.concat([df1, df3], join="inner")
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4

Combine DataFrame objects horizontally along the x axis by passing in axis=1.

>>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']],
...                    columns=['animal', 'name'])
>>> pd.concat([df1, df4], axis=1)
  letter  number  animal    name
0      a       1    bird   polly
1      b       2  monkey  george

Prevent the result from including duplicate index values with the verify_integrity option.

>>> df5 = pd.DataFrame([1], index=['a'])
>>> df5
   0
a  1
>>> df6 = pd.DataFrame([2], index=['a'])
>>> df6
   0
a  2
>>> pd.concat([df5, df6], verify_integrity=True)
ValueError: Indexes have overlapping values: ['a']
Scroll To Top