pandas.read_sql_table¶
- 
pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)[source]¶
- Read SQL database table into a DataFrame. - Given a table name and an SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. - Parameters: - table_name : string - Name of SQL table in database - con : SQLAlchemy connectable (or database string URI) - Sqlite DBAPI connection mode not supported - schema : string, default None - Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). - index_col : string or list of strings, optional, default: None - Column(s) to set as index(MultiIndex) - coerce_float : boolean, default True - Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. - parse_dates : list or dict, default: None - List of column names to parse as dates
- Dict of {column_name: format string}where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments ofpandas.to_datetime()Especially useful with databases without native Datetime support, such as SQLite
 - columns : list, default: None - List of column names to select from sql table - chunksize : int, default None - If specified, return an iterator where chunksize is the number of rows to include in each chunk. - Returns: - DataFrame - Notes - Any datetime values with time zone information will be converted to UTC