pandas.to_timedelta¶
- 
pandas.to_timedelta(arg, unit='ns', box=True, errors='raise')[source]¶
- Convert argument to timedelta - Parameters: - arg : string, timedelta, list, tuple, 1-d array, or Series - unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an - integer/float number - box : boolean, default True - If True returns a Timedelta/TimedeltaIndex of the results
- if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns]
 - errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’ - If ‘raise’, then invalid parsing will raise an exception
- If ‘coerce’, then invalid parsing will be set as NaT
- If ‘ignore’, then invalid parsing will return the input
 - Returns: - ret : timedelta64/arrays of timedelta64 if parsing succeeded - Examples - Parsing a single string to a Timedelta: - >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015') - Parsing a list or array of strings: - >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) - Converting numbers by specifying the unit keyword argument: - >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)