pandas.testing.assert_index_equal#

pandas.testing.assert_index_equal(left, right, exact='equiv', check_names=True, check_exact=True, check_categorical=True, check_order=True, rtol=1e-05, atol=1e-08, obj=None)[source]#

Check that left and right Index are equal.

Parameters:
leftIndex

The first index to compare.

rightIndex

The second index to compare.

exactbool or {‘equiv’}, default ‘equiv’

Whether to check the Index class, dtype and inferred_type are identical. If ‘equiv’, then RangeIndex can be substituted for Index with an int64 dtype as well.

check_namesbool, default True

Whether to check the names attribute.

check_exactbool, default True

Whether to compare number exactly.

check_categoricalbool, default True

Whether to compare internal Categorical exactly.

check_orderbool, default True

Whether to compare the order of index entries as well as their values. If True, both indexes must contain the same elements, in the same order. If False, both indexes must contain the same elements, but in any order.

rtolfloat, default 1e-5

Relative tolerance. Only used when check_exact is False.

atolfloat, default 1e-8

Absolute tolerance. Only used when check_exact is False.

objstr, default ‘Index’ or ‘MultiIndex’

Specify object name being compared, internally used to show appropriate assertion message.

See also

testing.assert_series_equal

Check that two Series are equal.

testing.assert_frame_equal

Check that two DataFrames are equal.

Examples

>>> from pandas import testing as tm
>>> a = pd.Index([1, 2, 3])
>>> b = pd.Index([1, 2, 3])
>>> tm.assert_index_equal(a, b)