pandas.DataFrame.pivot_table#
- DataFrame.pivot_table(values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=<no_default>, sort=True)[source]#
Create a spreadsheet-style pivot table as a DataFrame.
The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.
- Parameters:
- valueslist-like or scalar, optional
Column or columns to aggregate.
- indexcolumn, Grouper, array, or list of the previous
Keys to group by on the pivot table index. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values.
- columnscolumn, Grouper, array, or list of the previous
Keys to group by on the pivot table column. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values.
- aggfuncfunction, list of functions, dict, default “mean”
If a list of functions is passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If a dict is passed, the key is column to aggregate and the value is function or list of functions. If
margin=True
, aggfunc will be used to calculate the partial aggregates.- fill_valuescalar, default None
Value to replace missing values with (in the resulting pivot table, after aggregation).
- marginsbool, default False
If
margins=True
, specialAll
columns and rows will be added with partial group aggregates across the categories on the rows and columns.- dropnabool, default True
Do not include columns whose entries are all NaN. If True, rows with a NaN value in any column will be omitted before computing margins.
- margins_namestr, default ‘All’
Name of the row / column that will contain the totals when margins is True.
- observedbool, default False
This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.
Deprecated since version 2.2.0: The default value of
False
is deprecated and will change toTrue
in a future version of pandas.- sortbool, default True
Specifies if the result should be sorted.
Added in version 1.3.0.
- Returns:
- DataFrame
An Excel style pivot table.
See also
DataFrame.pivot
Pivot without aggregation that can handle non-numeric data.
DataFrame.melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
wide_to_long
Wide panel to long format. Less flexible but more user-friendly than melt.
Notes
Reference the user guide for more examples.
Examples
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9
This first example aggregates values by taking the sum.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum") >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0
We can also fill missing values using the fill_value parameter.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum", fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6
The next example aggregates by taking the mean across multiple columns.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", 'E': "mean"}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333
We can also calculate multiple types of aggregations for any given value column.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", ... 'E': ["min", "max", "mean"]}) >>> table D E mean max mean min A C bar large 5.500000 9 7.500000 6 small 5.500000 9 8.500000 8 foo large 2.000000 5 4.500000 4 small 2.333333 6 4.333333 2