pandas.tseries.offsets.BusinessDay#
- class pandas.tseries.offsets.BusinessDay#
DateOffset subclass representing possibly n business days.
- Parameters:
- nint, default 1
The number of days represented.
- normalizebool, default False
Normalize start/end dates to midnight.
- offsettimedelta, default timedelta(0)
Time offset to apply.
Examples
You can use the parameter
nto represent a shift of n business days.>>> ts = pd.Timestamp(2022, 12, 9, 15) >>> ts.strftime('%a %d %b %Y %H:%M') 'Fri 09 Dec 2022 15:00' >>> (ts + pd.offsets.BusinessDay(n=5)).strftime('%a %d %b %Y %H:%M') 'Fri 16 Dec 2022 15:00'
Passing the parameter
normalizeequal to True, you shift the start of the next business day to midnight.>>> ts = pd.Timestamp(2022, 12, 9, 15) >>> ts + pd.offsets.BusinessDay(normalize=True) Timestamp('2022-12-12 00:00:00')
Attributes
baseReturns a copy of the calling offset object with n=1 and all other attributes equal.
Return a string representing the frequency.
Return a dict of extra parameters for the offset.
Return a string representing the base frequency.
offsetAlias for self._offset.
Methods
copy()Return a copy of the frequency.
(DEPRECATED) Return boolean whether the frequency is a unit frequency (n=1).
is_month_end(ts)Return boolean whether a timestamp occurs on the month end.
is_month_start(ts)Return boolean whether a timestamp occurs on the month start.
is_on_offset(dt)Return boolean whether a timestamp intersects with this frequency.
is_quarter_end(ts)Return boolean whether a timestamp occurs on the quarter end.
is_quarter_start(ts)Return boolean whether a timestamp occurs on the quarter start.
is_year_end(ts)Return boolean whether a timestamp occurs on the year end.
is_year_start(ts)Return boolean whether a timestamp occurs on the year start.
rollback(dt)Roll provided date backward to next offset only if not on offset.
rollforward(dt)Roll provided date forward to next offset only if not on offset.