pandas.DataFrame.aggregate¶
- 
DataFrame.aggregate(func, axis=0, *args, **kwargs)[source]¶
- Aggregate using callable, string, dict, or list of string/callables - New in version 0.20.0. - Parameters: - func : callable, string, dictionary, or list of string/callables - Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names. - Accepted Combinations are: - string function name
- function
- list of functions
- dict of column names -> functions (or list of functions)
 - Returns: - aggregated : DataFrame - See also - pandas.DataFrame.apply,- pandas.DataFrame.transform,- pandas.DataFrame.groupby.aggregate,- pandas.DataFrame.resample.aggregate,- pandas.DataFrame.rolling.aggregate- Notes - Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). - agg is an alias for aggregate. Use it. - Examples - >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'], ... index=pd.date_range('1/1/2000', periods=10)) >>> df.iloc[3:7] = np.nan - Aggregate these functions across all columns - >>> df.agg(['sum', 'min']) A B C sum -0.182253 -0.614014 -2.909534 min -1.916563 -1.460076 -1.568297 - Different aggregations per column - >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 1.514318 min -1.916563 -1.460076 sum -0.182253 NaN