pandas.DataFrame.apply¶
- 
DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)[source]¶
- Applies function along input axis of DataFrame. - Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty. - Parameters: - func : function - Function to apply to each column/row - axis : {0 or ‘index’, 1 or ‘columns’}, default 0 - 0 or ‘index’: apply function to each column
- 1 or ‘columns’: apply function to each row
 - broadcast : boolean, default False - For aggregation functions, return object of same size with values propagated - raw : boolean, default False - If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance - reduce : boolean or None, default None - Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. - args : tuple - Positional arguments to pass to function in addition to the array/series - Additional keyword arguments will be passed as keywords to the function - Returns: - applied : Series or DataFrame - See also - DataFrame.applymap
- For elementwise operations
- DataFrame.aggregate
- only perform aggregating type operations
- DataFrame.transform
- only perform transformating type operations
 - Notes - In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row. - Examples - >>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)