Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.CategoricalIndex.map

CategoricalIndex.map(mapper)[source]

Map values using input correspondence (a dict, Series, or function).

Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a CategoricalIndex which has the same order property as the original, otherwise an Index is returned.

If a dict or Series is used any unmapped category is mapped to NaN. Note that if this happens an Index will be returned.

Parameters:

mapper : function, dict, or Series

Mapping correspondence.

Returns:

pandas.CategoricalIndex or pandas.Index

Mapped index.

See also

Index.map
Apply a mapping correspondence on an Index.
Series.map
Apply a mapping correspondence on a Series.
Series.apply
Apply more complex functions on a Series.

Examples

>>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
>>> idx
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
                 ordered=False, dtype='category')
>>> idx.map(lambda x: x.upper())
CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],
                 ordered=False, dtype='category')
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
CategoricalIndex(['first', 'second', 'third'], categories=['first',
                 'second', 'third'], ordered=False, dtype='category')

If the mapping is one-to-one the ordering of the categories is preserved:

>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
>>> idx
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
                 ordered=True, dtype='category')
>>> idx.map({'a': 3, 'b': 2, 'c': 1})
CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,
                 dtype='category')

If the mapping is not one-to-one an Index is returned:

>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
Index(['first', 'second', 'first'], dtype='object')

If a dict is used, all unmapped categories are mapped to NaN and the result is an Index:

>>> idx.map({'a': 'first', 'b': 'second'})
Index(['first', 'second', nan], dtype='object')
Scroll To Top