Reshaping and Pivot Tables¶
Reshaping by pivoting DataFrame objects¶
Data is often stored in CSV files or databases in so-called “stacked” or “record” format:
In [1]: df
Out[1]:
date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
3 2000-01-03 B -1.135632
4 2000-01-04 B 1.212112
5 2000-01-05 B -0.173215
6 2000-01-03 C 0.119209
7 2000-01-04 C -1.044236
8 2000-01-05 C -0.861849
9 2000-01-03 D -2.104569
10 2000-01-04 D -0.494929
11 2000-01-05 D 1.071804
For the curious here is how the above DataFrame
was created:
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
N, K = frame.shape
data = {'value' : frame.values.ravel('F'),
'variable' : np.asarray(frame.columns).repeat(N),
'date' : np.tile(np.asarray(frame.index), K)}
return pd.DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A
we could do:
In [2]: df[df['variable'] == 'A']
Out[2]:
date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
But suppose we wish to do time series operations with the variables. A better
representation would be where the columns
are the unique variables and an
index
of dates identifies individual observations. To reshape the data into
this form, we use the DataFrame.pivot()
method (also implemented as a
top level function pivot()
):
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:
variable A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
If the values
argument is omitted, and the input DataFrame
has more than
one column of values which are not used as column or index inputs to pivot
,
then the resulting “pivoted” DataFrame
will have hierarchical columns whose topmost level indicates the respective value
column:
In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot('date', 'variable')
In [6]: pivoted
Out[6]:
value value2
variable A B C D A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608
You can then select subsets from the pivoted DataFrame
:
In [7]: pivoted['value2']
Out[7]:
variable A B C D
date
2000-01-03 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Reshaping by stacking and unstacking¶
Closely related to the pivot()
method are the related
stack()
and unstack()
methods available on
Series
and DataFrame
. These methods are designed to work together with
MultiIndex
objects (see the section on hierarchical indexing). Here are essentially what these methods do:
stack
: “pivot” a level of the (possibly hierarchical) column labels, returning aDataFrame
with an index with a new inner-most level of row labels.unstack
: (inverse operation ofstack
) “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshapedDataFrame
with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
...: 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two',
...: 'one', 'two', 'one', 'two']]))
...:
In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [11]: df2 = df[:4]
In [12]: df2
Out[12]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
The stack
function “compresses” a level in the DataFrame
’s columns to
produce either:
- A
Series
, in the case of a simple column Index.- A
DataFrame
, in the case of aMultiIndex
in the columns.
If the columns have a MultiIndex
, you can choose which level to stack. The
stacked level becomes the new lowest level in a MultiIndex
on the columns:
In [13]: stacked = df2.stack()
In [14]: stacked
Out[14]:
first second
bar one A 0.721555
B -0.706771
two A -1.039575
B 0.271860
baz one A -0.424972
B 0.567020
two A 0.276232
B -1.087401
dtype: float64
With a “stacked” DataFrame
or Series
(having a MultiIndex
as the
index
), the inverse operation of stack
is unstack
, which by default
unstacks the last level:
In [15]: stacked.unstack()
Out[15]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
In [16]: stacked.unstack(1)