Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.DataFrame.pivot

DataFrame.pivot(index=None, columns=None, values=None)[source]

Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping.

Parameters:

index : string or object, optional

Column to use to make new frame’s index. If None, uses existing index.

columns : string or object

Column to use to make new frame’s columns.

values : string, object or a list of the previous, optional

Column(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.

Changed in version 0.23.0: Also accept list of column names.

Returns:

DataFrame

Returns reshaped DataFrame.

Raises:

ValueError:

When there are any index, columns combinations with multiple values. DataFrame.pivot_table when you need to aggregate.

See also

DataFrame.pivot_table
generalization of pivot that can handle duplicate values for one index/column pair.
DataFrame.unstack
pivot based on the index values instead of a column.

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods.

Examples

>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
...                            'two'],
...                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
...                    'baz': [1, 2, 3, 4, 5, 6],
...                    'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
    foo   bar  baz  zoo
0   one   A    1    x
1   one   B    2    y
2   one   C    3    z
3   two   A    4    q
4   two   B    5    w
5   two   C    6    t
>>> df.pivot(index='foo', columns='bar', values='baz')
bar  A   B   C
foo
one  1   2   3
two  4   5   6
>>> df.pivot(index='foo', columns='bar')['baz']
bar  A   B   C
foo
one  1   2   3
two  4   5   6
>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
      baz       zoo
bar   A  B  C   A  B  C
foo
one   1  2  3   x  y  z
two   4  5  6   q  w  t

A ValueError is raised if there are any duplicates.

>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
...                    "bar": ['A', 'A', 'B', 'C'],
...                    "baz": [1, 2, 3, 4]})
>>> df
   foo bar  baz
0  one   A    1
1  one   A    2
2  two   B    3
3  two   C    4

Notice that the first two rows are the same for our index and columns arguments.

>>> df.pivot(index='foo', columns='bar', values='baz')
Traceback (most recent call last):
   ...
ValueError: Index contains duplicate entries, cannot reshape
Scroll To Top