pandas.DataFrame.notnull¶
-
DataFrame.
notnull
()[source]¶ Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.Returns: DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
See also
DataFrame.notnull
- alias of notna
DataFrame.isna
- boolean inverse of notna
DataFrame.dropna
- omit axes labels with missing values
notna
- top-level notna
Examples
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool