Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.Series.drop

Series.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]

Return Series with specified index labels removed.

Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.

Parameters:

labels : single label or list-like

Index labels to drop.

axis : 0, default 0

Redundant for application on Series.

index, columns : None

Redundant for application on Series, but index can be used instead of labels.

New in version 0.21.0.

level : int or level name, optional

For MultiIndex, level for which the labels will be removed.

inplace : bool, default False

If True, do operation inplace and return None.

errors : {‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and only existing labels are dropped.

Returns:
dropped : pandas.Series
Raises:

KeyError

If none of the labels are found in the index.

See also

Series.reindex
Return only specified index labels of Series.
Series.dropna
Return series without null values.
Series.drop_duplicates
Return Series with duplicate values removed.
DataFrame.drop
Drop specified labels from rows or columns.

Examples

>>> s = pd.Series(data=np.arange(3), index=['A','B','C'])
>>> s
A  0
B  1
C  2
dtype: int64

Drop labels B en C

>>> s.drop(labels=['B','C'])
A  0
dtype: int64

Drop 2nd level label in MultiIndex Series

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                              [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
...               index=midx)
>>> s
lama    speed      45.0
        weight    200.0
        length      1.2
cow     speed      30.0
        weight    250.0
        length      1.5
falcon  speed     320.0
        weight      1.0
        length      0.3
dtype: float64
>>> s.drop(labels='weight', level=1)
lama    speed      45.0
        length      1.2
cow     speed      30.0
        length      1.5
falcon  speed     320.0
        length      0.3
dtype: float64
Scroll To Top