Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.Series.loc

Series.loc

Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

  • A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

  • A list or array of labels, e.g. ['a', 'b', 'c'].

  • A slice object with labels, e.g. 'a':'f'.

    Warning

    Note that contrary to usual python slices, both the start and the stop are included

  • A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

  • A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

See more at Selection by Label

Raises:

KeyError:

when any items are not found

See also

DataFrame.at
Access a single value for a row/column label pair
DataFrame.iloc
Access group of rows and columns by integer position(s)
DataFrame.xs
Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
Series.loc
Access group of values using labels

Examples

Getting values

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=['cobra', 'viper', 'sidewinder'],
...      columns=['max_speed', 'shield'])
>>> df
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed    4
shield       5
Name: viper, dtype: int64

List of labels. Note using [[]] returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
            max_speed  shield
viper               4       5
sidewinder          7       8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra    1
viper    4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
            max_speed  shield
sidewinder          7       8

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
            max_speed  shield
sidewinder          7       8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
            max_speed
sidewinder          7

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
            max_speed  shield
sidewinder          7       8

Setting values

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df
            max_speed  shield
cobra               1       2
viper               4      50
sidewinder          7      50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df
            max_speed  shield
cobra              10      10
viper               4      50
sidewinder          7      50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df
            max_speed  shield
cobra              30      10
viper              30      50
sidewinder         30      50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df
            max_speed  shield
cobra              30      10
viper               0       0
sidewinder          0       0

Getting values on a DataFrame with an index that has integer labels

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df
   max_speed  shield
7          1       2
8          4       5
9          7       8

Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included.

>>> df.loc[7:9]
   max_speed  shield
7          1       2
8          4       5
9          7       8

Getting values with a MultiIndex

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
...    ('cobra', 'mark i'), ('cobra', 'mark ii'),
...    ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
...    ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
...         [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
         max_speed  shield
mark i          12       2
mark ii          0       4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed    0
shield       4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed    12
shield        2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using [[]] returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
               max_speed  shield
cobra mark ii          0       4

Single tuple for the index with a single label for the column

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
                    max_speed  shield
cobra      mark i          12       2
           mark ii          0       4
sidewinder mark i          10      20
           mark ii          1       4
viper      mark ii          7       1
Scroll To Top