pandas.Series.values¶
-
Series.
values
¶ Return Series as ndarray or ndarray-like depending on the dtype
Returns: - arr : numpy.ndarray or ndarray-like
Examples
>>> pd.Series([1, 2, 3]).values array([1, 2, 3])
>>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object)
>>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c]
Timezone aware datetime data is converted to UTC:
>>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')