pandas.read_fwf

pandas.read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds)[source]

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters:
filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any \

object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

colspecs : list of pairs (int, int) or ‘infer’. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default=’infer’).

widths : list of ints. optional

A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

delimiter : str, default '    ' + ' '

Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’

Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to header=None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list will cause a UserWarning to be issued.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols : list-like or callable, default None

Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid list-like usecols parameter would be [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]. Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order.

If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, …

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object together with suitable na_values settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be lambda x: x in [0, 2].

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

Whether or not to include the default NaN values when parsing the data. Depending on whether na_values is passed in, the behavior is as follows:

  • If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values used for parsing.
  • If keep_default_na is True, and na_values are not specified, only the default NaN values are used for parsing.
  • If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are used for parsing.
  • If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN.

Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored.

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

parse_dates : boolean or list of ints or names or list of lists or dict, default False

  • boolean. If True -> try parsing the index.
  • list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
  • list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
  • dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’ and filepath_or_buffer is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’ (otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote : boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element.

escapechar : str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing #empty\na,b,c\n1,2,3 with header=0 will result in ‘a,b,c’ being treated as the header.

encoding : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

dialect : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.

tupleize_cols : boolean, default False

Deprecated since version 0.21.0: This argument will be removed and will always convert to MultiIndex

Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned.

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output.

low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

Returns:
result : DataFrame or TextParser
Scroll To Top