pandas.read_hdf

pandas.read_hdf(path_or_buf, key=None, mode='r', **kwargs)[source]

Read from the store, close it if we opened it.

Retrieve pandas object stored in file, optionally based on where criteria

Parameters:

path_or_buf : string, buffer or path object

Path to the file to open, or an open pandas.HDFStore object. Supports any object implementing the __fspath__ protocol. This includes pathlib.Path and py._path.local.LocalPath objects.

New in version 0.19.0: support for pathlib, py.path.

New in version 0.21.0: support for __fspath__ proptocol.

key : object, optional

The group identifier in the store. Can be omitted if the HDF file contains a single pandas object.

mode : {‘r’, ‘r+’, ‘a’}, optional

Mode to use when opening the file. Ignored if path_or_buf is a pandas.HDFStore. Default is ‘r’.

where : list, optional

A list of Term (or convertible) objects.

start : int, optional

Row number to start selection.

stop : int, optional

Row number to stop selection.

columns : list, optional

A list of columns names to return.

iterator : bool, optional

Return an iterator object.

chunksize : int, optional

Number of rows to include in an iteration when using an iterator.

errors : str, default ‘strict’

Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options.

**kwargs

Additional keyword arguments passed to HDFStore.

Returns:

item : object

The selected object. Return type depends on the object stored.

See also

pandas.DataFrame.to_hdf
write a HDF file from a DataFrame
pandas.HDFStore
low-level access to HDF files

Examples

>>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z'])
>>> df.to_hdf('./store.h5', 'data')
>>> reread = pd.read_hdf('./store.h5')
Scroll To Top