pandas.testing.assert_frame_equal¶
-
pandas.testing.
assert_frame_equal
(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj='DataFrame')[source]¶ Check that left and right DataFrame are equal.
Parameters: - left : DataFrame
- right : DataFrame
check_dtype : bool, default True
Whether to check the DataFrame dtype is identical.
check_index_type : bool / string {‘equiv’}, default False
Whether to check the Index class, dtype and inferred_type are identical.
check_column_type : bool / string {‘equiv’}, default False
Whether to check the columns class, dtype and inferred_type are identical.
check_frame_type : bool, default False
Whether to check the DataFrame class is identical.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare
check_names : bool, default True
Whether to check the Index names attribute.
by_blocks : bool, default False
Specify how to compare internal data. If False, compare by columns. If True, compare by blocks.
check_exact : bool, default False
Whether to compare number exactly.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
check_like : bool, default False
If true, ignore the order of rows & columns
obj : str, default ‘DataFrame’
Specify object name being compared, internally used to show appropriate assertion message