Version 0.12.0 (July 24, 2013)¶
This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.
Highlights include a consistent I/O API naming scheme, routines to read html,
write MultiIndexes to csv files, read & write STATA data files, read & write JSON format
files, Python 3 support for HDFStore, filtering of groupby expressions via filter, and a
revamped replace routine that accepts regular expressions.
API changes¶
The I/O API is now much more consistent with a set of top level
readerfunctions accessed likepd.read_csv()that generally return apandasobject.
read_csv
read_excel
read_hdf
read_sql
read_json
read_html
read_stata
read_clipboardThe corresponding
writerfunctions are object methods that are accessed likedf.to_csv()
to_csv
to_excel
to_hdf
to_sql
to_json
to_html
to_stata
to_clipboardFix modulo and integer division on Series,DataFrames to act similarly to
floatdtypes to returnnp.nanornp.infas appropriate (GH3590). This correct a numpy bug that treatsintegerandfloatdtypes differently.In [1]: p = pd.DataFrame({"first": [4, 5, 8], "second": [0, 0, 3]}) In [2]: p % 0 Out[2]: first second 0 NaN NaN 1 NaN NaN 2 NaN NaN In [3]: p % p Out[3]: first second 0 0.0 NaN 1 0.0 NaN 2 0.0 0.0 In [4]: p / p Out[4]: first second 0 1.0 NaN 1 1.0 NaN 2 1.0 1.0 In [5]: p / 0 Out[5]: first second 0 inf NaN 1 inf NaN 2 inf infAdd
squeezekeyword togroupbyto allow reduction from DataFrame -> Series if groups are unique. This is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).In [2]: df2 = pd.DataFrame([{"val1": 1, "val2": 20}, ...: {"val1": 1, "val2": 19}, ...: {"val1": 1, "val2": 27}, ...: {"val1": 1, "val2": 12}]) In [3]: def func(dataf): ...: return dataf["val2"] - dataf["val2"].mean() ...: In [4]: # squeezing the result frame to a series (because we have unique groups) ...: df2.groupby("val1", squeeze=True).apply(func) Out[4]: 0 0.5 1 -0.5 2 7.5 3 -7.5 Name: 1, dtype: float64 In [5]: # no squeezing (the default, and behavior in 0.10.1) ...: df2.groupby("val1").apply(func) Out[5]: val2 0 1 2 3 val1 1 0.5 -0.5 7.5 -7.5Raise on
ilocwhen boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Sinceilocis purely positional based, the labels on the Series are not alignable (GH3631)This case is rarely used, and there are plenty of alternatives. This preserves the
ilocAPI to be purely positional based.In [6]: df = pd.DataFrame(range(5), index=list("ABCDE"), columns=["a"]) In [7]: mask = df.a % 2 == 0 In [8]: mask Out[8]: A True B False C True D False E True Name: a, dtype: bool # this is what you should use In [9]: df.loc[mask] Out[9]: a A 0 C 2 E 4 # this will work as well In [10]: df.iloc[mask.values] Out[10]: a A 0 C 2 E 4
df.iloc[mask]will raise aValueErrorThe
raise_on_errorargument to plotting functions is removed. Instead, plotting functions raise aTypeErrorwhen thedtypeof the object isobjectto remind you to avoidobjectarrays whenever possible and thus you should cast to an appropriate numeric dtype if you need to plot something.Add
colormapkeyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie, matplotlib.cm.jet) or a string name of such an object (ie, ‘jet’). The colormap is sampled to select the color for each column. Please see Colormaps for more information. (GH3860)
DataFrame.interpolate()is now deprecated. Please useDataFrame.fillna()andDataFrame.replace()instead. (GH3582, GH3675, GH3676)the
methodandaxisarguments ofDataFrame.replace()are deprecated
DataFrame.replace‘sinfer_typesparameter is removed and now performs conversion by default. (GH3907)Add the keyword
allow_duplicatestoDataFrame.insertto allow a duplicate column to be inserted ifTrue, default isFalse(same as prior to 0.12) (GH3679)IO api
added top-level function
read_excelto replace the following, The original API is deprecated and will be removed in a future versionfrom pandas.io.parsers import ExcelFile xls = ExcelFile("path_to_file.xls") xls.parse("Sheet1", index_col=None, na_values=["NA"])With
import pandas as pd pd.read_excel("path_to_file.xls", "Sheet1", index_col=None, na_values=["NA"])added top-level function
read_sqlthat is equivalent to the followingfrom pandas.io.sql import read_frame read_frame(...)
DataFrame.to_htmlandDataFrame.to_latexnow accept a path for their first argument (GH3702)Do not allow astypes on
datetime64[ns]except toobject, andtimedelta64[ns]toobject/int(GH3425)The behavior of
datetime64dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise aTypeErrorwhen performed on aSeriesand return an emptySerieswhen performed on aDataFramesimilar to performing these operations on, for example, aDataFrameofsliceobjects:
sum, prod, mean, std, var, skew, kurt, corr, and cov
read_htmlnow defaults toNonewhen reading, and falls back onbs4+html5libwhen lxml fails to parse. a list of parsers to try until success is also validThe internal
pandasclass hierarchy has changed (slightly). The previousPandasObjectnow is calledPandasContainerand a newPandasObjecthas become the base class forPandasContaineras well asIndex,Categorical,GroupBy,SparseList, andSparseArray(+ their base classes). Currently,PandasObjectprovides string methods (fromStringMixin). (GH4090, GH4092)New
StringMixinthat, given a__unicode__method, gets python 2 and python 3 compatible string methods (__str__,__bytes__, and__repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)
IO enhancements¶
pd.read_html()can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See the docsYou can use
pd.read_html()to read the output fromDataFrame.to_html()like soIn [11]: df = pd.DataFrame({"a": range(3), "b": list("abc")}) In [12]: print(df) a b 0 0 a 1 1 b 2 2 c In [13]: html = df.to_html() In [14]: alist = pd.read_html(html, index_col=0) In [15]: print(df == alist[0]) a b 0 True True 1 True True 2 True TrueNote that
alisthere is a Pythonlistsopd.read_html()andDataFrame.to_html()are not inverses.
pd.read_html()no longer performs hard conversion of date strings (GH3656).Warning
You may have to install an older version of BeautifulSoup4, See the installation docs
Added module for reading and writing Stata files:
pandas.io.stata(GH1512) accessible viaread_statatop-level function for reading, andto_stataDataFrame method for writing, See the docsAdded module for reading and writing json format files:
pandas.io.jsonaccessible viaread_jsontop-level function for reading, andto_jsonDataFrame method for writing, See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
MultiIndexcolumn support for reading and writing csv format files
The
headeroption inread_csvnow accepts a list of the rows from which to read the index.The option,
tupleize_colscan now be specified in bothto_csvandread_csv, to provide compatibility for the pre 0.12 behavior of writing and readingMultIndexcolumns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as aMultiIndexcolumn.Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read
MultiIndexcolumns will be in the new format. (GH3571, GH1651, GH3141)If an
index_colis not specified (e.g. you don’t have an index, or wrote it withdf.to_csv(..., index=False), then anynameson the columns index will be lost.In [16]: from pandas._testing import makeCustomDataframe as mkdf In [17]: df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) In [18]: df.to_csv("mi.csv") In [19]: print(open("mi.csv").read()) C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 In [20]: pd.read_csv("mi.csv", header=[0, 1, 2, 3], index_col=[0, 1]) Out[20]: C0 C_l0_g0 C_l0_g1 C_l0_g2 C1 C_l1_g0 C_l1_g1 C_l1_g2 C2 C_l2_g0 C_l2_g1 C_l2_g2 C3 C_l3_g0 C_l3_g1 C_l3_g2 R0 R1 R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2 R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2 R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2 R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2 R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2Support for
HDFStore(viaPyTables 3.0.0) on Python3Iterator support via
read_hdfthat automatically opens and closes the store when iteration is finished. This is only for tablesIn [25]: path = 'store_iterator.h5' In [26]: pd.DataFrame(np.random.randn(10, 2)).to_hdf(path, 'df', table=True) In [27]: for df in pd.read_hdf(path, 'df', chunksize=3): ....: print(df) ....: 0 1 0 0.713216 -0.778461 1 -0.661062 0.862877 2 0.344342 0.149565 0 1 3 -0.626968 -0.875772 4 -0.930687 -0.218983 5 0.949965 -0.442354 0 1 6 -0.402985 1.111358 7 -0.241527 -0.670477 8 0.049355 0.632633 0 1 9 -1.502767 -1.225492
read_csvwill now throw a more informative error message when a file contains no columns, e.g., all newline characters
Other enhancements¶
DataFrame.replace()now allows regular expressions on containedSerieswith object dtype. See the examples section in the regular docs Replacing via String ExpressionFor example you can do
In [21]: df = pd.DataFrame({"a": list("ab.."), "b": [1, 2, 3, 4]}) In [22]: df.replace(regex=r"\s*\.\s*", value=np.nan) Out[22]: a b 0 a 1 1 b 2 2 NaN 3 3 NaN 4to replace all occurrences of the string
'.'with zero or more instances of surrounding white space withNaN.Regular string replacement still works as expected. For example, you can do
In [23]: df.replace(".", np.nan) Out[23]: a b 0 a 1 1 b 2 2 NaN 3 3 NaN 4to replace all occurrences of the string
'.'withNaN.
pd.melt()now accepts the optional parametersvar_nameandvalue_nameto specify custom column names of the returned DataFrame.
pd.set_option()now allows N option, value pairs (GH3667).Let’s say that we had an option
'a.b'and another option'b.c'. We can set them at the same time:In [31]: pd.get_option('a.b') Out[31]: 2 In [32]: pd.get_option('b.c') Out[32]: 3 In [33]: pd.set_option('a.b', 1, 'b.c', 4) In [34]: pd.get_option('a.b') Out[34]: 1 In [35]: pd.get_option('b.c') Out[35]: 4The
filtermethod for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.In [24]: sf = pd.Series([1, 1, 2, 3, 3, 3]) In [25]: sf.groupby(sf).filter(lambda x: x.sum() > 2) Out[25]: 3 3 4 3 5 3 dtype: int64The argument of
filtermust a function that, applied to the group as a whole, returnsTrueorFalse.Another useful operation is filtering out elements that belong to groups with only a couple members.
In [26]: dff = pd.DataFrame({"A": np.arange(8), "B": list("aabbbbcc")}) In [27]: dff.groupby("B").filter(lambda x: len(x) > 2) Out[27]: A B 2 2 b 3 3 b 4 4 b 5 5 bAlternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.
In [28]: dff.groupby("B").filter(lambda x: len(x) > 2, dropna=False) Out[28]: A B 0 NaN NaN 1 NaN NaN 2 2.0 b 3 3.0 b 4 4.0 b 5 5.0 b 6 NaN NaN 7 NaN NaNSeries and DataFrame hist methods now take a
figsizeargument (GH3834)DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills
read_htmlnow raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)
Experimental features¶
Added experimental
CustomBusinessDayclass to supportDateOffsetswith custom holiday calendars and custom weekmasks. (GH2301)Note
This uses the
numpy.busdaycalendarAPI introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.In [29]: from pandas.tseries.offsets import CustomBusinessDay In [30]: from datetime import datetime # As an interesting example, let's look at Egypt where # a Friday-Saturday weekend is observed. In [31]: weekmask_egypt = "Sun Mon Tue Wed Thu" # They also observe International Workers' Day so let's # add that for a couple of years In [32]: holidays = ["2012-05-01", datetime(2013, 5, 1), np.datetime64("2014-05-01")] In [33]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt) In [34]: dt = datetime(2013, 4, 30) In [35]: print(dt + 2 * bday_egypt) 2013-05-05 00:00:00 In [36]: dts = pd.date_range(dt, periods=5, freq=bday_egypt) In [37]: print(pd.Series(dts.weekday, dts).map(pd.Series("Mon Tue Wed Thu Fri Sat Sun".split()))) 2013-04-30 Tue 2013-05-02 Thu 2013-05-05 Sun 2013-05-06 Mon 2013-05-07 Tue Freq: C, dtype: object
Bug fixes¶
Plotting functions now raise a
TypeErrorbefore trying to plot anything if the associated objects have a dtype ofobject(GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.
fillnamethods now raise aTypeErrorif thevalueparameter is a list or tuple.
Series.strnow supports iteration (GH3638). You can iterate over the individual elements of each string in theSeries. Each iteration yields aSerieswith either a single character at each index of the originalSeriesorNaN. For example,In [38]: strs = "go", "bow", "joe", "slow" In [39]: ds = pd.Series(strs) In [40]: for s in ds.str: ....: print(s) ....: 0 g 1 b 2 j 3 s dtype: object 0 o 1 o 2 o 3 l dtype: object 0 NaN 1 w 2 e 3 o dtype: object 0 NaN 1 NaN 2 NaN 3 w dtype: object In [41]: s Out[41]: 0 NaN 1 NaN 2 NaN 3 w dtype: object In [42]: s.dropna().values.item() == "w" Out[42]: TrueThe last element yielded by the iterator will be a
Seriescontaining the last element of the longest string in theSerieswith all other elements beingNaN. Here since'slow'is the longest string and there are no other strings with the same length'w'is the only non-null string in the yieldedSeries.
HDFStore
will retain index attributes (freq,tz,name) on recreation (GH3499)
will warn with a
AttributeConflictWarningif you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existingsupport datelike columns with a timezone as data_columns (GH2852)
Non-unique index support clarified (GH3468).
Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
Fix construction of a DataFrame with a duplicate index
ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
Fix to_csv to handle non-unique columns (GH3495)
Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
Allow insert/delete to non-unique columns (GH3679)
Non-unique indexing with a slice via
locand friends fixed (GH3659)Allow insert/delete to non-unique columns (GH3679)
Extend
reindexto correctly deal with non-unique indices (GH3679)
DataFrame.itertuples()now works with frames with duplicate column names (GH3873)Bug in non-unique indexing via
iloc(GH4017); addedtakeableargument toreindexfor location-based takingAllow non-unique indexing in series via
.ix/.locand__getitem__(GH4246)Fixed non-unique indexing memory allocation issue with
.ix/.loc(GH4280)
DataFrame.from_recordsdid not accept empty recarrays (GH3682)
read_htmlnow correctly skips tests (GH3741)Fixed a bug where
DataFrame.replacewith a compiled regular expression in theto_replaceargument wasn’t working (GH3907)Improved
networktest decorator to catchIOError(and thereforeURLErroras well). Addedwith_connectivity_checkdecorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, newoptional_argsdecorator factory for decorators. (GH3910, GH3914)Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
Series.histwill now take the figure from the current environment if one is not passedFixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
Fixed running of
toxunder python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
Fixed bug in
DataFrame.replacewhere a nested dict wasn’t being iterated over when regex=False (GH4115)Fixed bug in the parsing of microseconds when using the
formatargument into_datetime(GH4152)Fixed bug in
PandasAutoDateLocatorwhereinvert_xaxistriggered incorrectlyMilliSecondLocator(GH3990)Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
Fixed the legend displaying in
DataFrame.plot(kind='kde')(GH4216)Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
Fixed bug in initializing
DatetimeIndexwith an array of strings in a certain time zone (GH4229)Fixed bug where html5lib wasn’t being properly skipped (GH4265)
Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)
See the full release notes or issue tracker on GitHub for a complete list.
Contributors¶
A total of 50 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Andy Hayden
Chang She
Christopher Whelan
Damien Garaud
Dan Allan
Dan Birken
Dieter Vandenbussche
Dražen Lučanin
Gábor Lipták +
Jeff Mellen +
Jeff Tratner +
Jeffrey Tratner +
Jonathan deWerd +
Joris Van den Bossche +
Juraj Niznan +
Karmel Allison
Kelsey Jordahl
Kevin Stone +
Kieran O’Mahony
Kyle Meyer +
Mike Kelly +
PKEuS +
Patrick O’Brien +
Phillip Cloud
Richard Höchenberger +
Skipper Seabold
SleepingPills +
Tobias Brandt
Tom Farnbauer +
TomAugspurger +
Trent Hauck +
Wes McKinney
Wouter Overmeire
Yaroslav Halchenko
conmai +
danielballan +
davidshinn +
dieterv77
duozhang +
ejnens +
gliptak +
jniznan +
jreback
lexual
nipunreddevil +
ogiaquino +
stonebig +
tim smith +
timmie
y-p