Version 0.18.1 (May 3, 2016)¶
This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.
Highlights include:
.groupby(...)has been enhanced to provide convenient syntax when working with.rolling(..),.expanding(..)and.resample(..)per group, see herepd.to_datetime()has gained the ability to assemble dates from aDataFrame, see hereMethod chaining improvements, see here.
Custom business hour offset, see here.
Many bug fixes in the handling of
sparse, see hereExpanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).
What’s new in v0.18.1
New features¶
Custom business hour¶
The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which
allows you to specify arbitrary holidays. For details,
see Custom Business Hour (GH11514)
In [1]: from pandas.tseries.offsets import CustomBusinessHour
In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [3]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
Friday before MLK Day
In [4]: import datetime
In [5]: dt = datetime.datetime(2014, 1, 17, 15)
In [6]: dt + bhour_us
Out[6]: Timestamp('2014-01-17 16:00:00')
Tuesday after MLK Day (Monday is skipped because it’s a holiday)
In [7]: dt + bhour_us * 2
Out[7]: Timestamp('2014-01-20 09:00:00')
Method .groupby(..) syntax with window and resample operations¶
.groupby(...) has been enhanced to provide convenient syntax when working with .rolling(..), .expanding(..) and .resample(..) per group, see (GH12486, GH12738).
You can now use .rolling(..) and .expanding(..) as methods on groupbys. These return another deferred object (similar to what .rolling() and .expanding() do on ungrouped pandas objects). You can then operate on these RollingGroupby objects in a similar manner.
Previously you would have to do this to get a rolling window mean per-group:
In [8]: df = pd.DataFrame({"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)})
In [9]: df
Out[9]:
A B
0 1 0
1 1 1
2 1 2
3 1 3
4 1 4
.. .. ..
35 3 35
36 3 36
37 3 37
38 3 38
39 3 39
[40 rows x 2 columns]
In [10]: df.groupby("A").apply(lambda x: x.rolling(4).B.mean())
Out[10]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
...
3 35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, Length: 40, dtype: float64
Now you can do:
In [11]: df.groupby("A").rolling(4).B.mean()
Out[11]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
...
3 35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, Length: 40, dtype: float64
For .resample(..) type of operations, previously you would have to:
In [12]: df = pd.DataFrame(
....: {
....: "date": pd.date_range(start="2016-01-01", periods=4, freq="W"),
....: "group": [1, 1, 2, 2],
....: "val": [5, 6, 7, 8],
....: }
....: ).set_index("date")
....:
In [13]: df
Out[13]:
group val
date
2016-01-03 1 5
2016-01-10 1 6
2016-01-17 2 7
2016-01-24 2 8
[4 rows x 2 columns]
In [14]: df.groupby("group").apply(lambda x: x.resample("1D").ffill())
Out[14]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
... ... ...
2 2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8
[16 rows x 2 columns]
Now you can do:
In [15]: df.groupby("group").resample("1D").ffill()
Out[15]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
... ... ...
2 2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8
[16 rows x 2 columns]
Method chaining improvements¶
The following methods / indexers now accept a callable. It is intended to make
these more useful in method chains, see the documentation.
(GH11485, GH12533)
.where()and.mask().loc[],iloc[]and.ix[][]indexing
Methods .where() and .mask()¶
These can accept a callable for the condition and other
arguments.
In [16]: df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
In [17]: df.where(lambda x: x > 4, lambda x: x + 10)
Out[17]:
A B C
0 11 14 7
1 12 5 8
2 13 6 9
[3 rows x 3 columns]
Methods .loc[], .iloc[], .ix[]¶
These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or anything which is valid for these indexer’s input.
# callable returns bool indexer
In [18]: df.loc[lambda x: x.A >= 2, lambda x: x.sum() > 10]
Out[18]:
B C
1 5 8
2 6 9
[2 rows x 2 columns]
# callable returns list of labels
In [19]: df.loc[lambda x: [1, 2], lambda x: ["A", "B"]]
Out[19]:
A B
1 2 5
2 3 6
[2 rows x 2 columns]
Indexing with``[]``¶
Finally, you can use a callable in [] indexing of Series, DataFrame and Panel.
The callable must return a valid input for [] indexing depending on its
class and index type.
In [20]: df[lambda x: "A"]
Out[20]:
0 1
1 2
2 3
Name: A, Length: 3, dtype: int64
Using these methods / indexers, you can chain data selection operations without using temporary variable.
In [21]: bb = pd.read_csv("data/baseball.csv", index_col="id")
In [22]: (bb.groupby(["year", "team"]).sum().loc[lambda df: df.r > 100])
Out[22]:
stint g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp
year team
2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 127.0 14.0 1.0 1.0 15.0 18.0
DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 176.0 3.0 10.0 4.0 8.0 28.0
HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 212.0 3.0 9.0 16.0 6.0 17.0
LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 141.0 8.0 9.0 3.0 8.0 29.0
NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 310.0 24.0 23.0 18.0 15.0 48.0
SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 188.0 51.0 8.0 16.0 6.0 41.0
TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 140.0 4.0 5.0 2.0 8.0 16.0
TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 265.0 16.0 12.0 4.0 16.0 38.0
[8 rows x 18 columns]
Partial string indexing on DatetimeIndex when part of a MultiIndex¶
Partial string indexing now matches on DateTimeIndex when part of a MultiIndex (GH10331)
In [23]: dft2 = pd.DataFrame(
....: np.random.randn(20, 1),
....: columns=["A"],
....: index=pd.MultiIndex.from_product(
....: [pd.date_range("20130101", periods=10, freq="12H"), ["a", "b"]]
....: ),
....: )
....:
In [24]: dft2
Out[24]:
A
2013-01-01 00:00:00 a 0.469112
b -0.282863
2013-01-01 12:00:00 a -1.509059
b -1.135632
2013-01-02 00:00:00 a 1.212112
... ...
2013-01-04 12:00:00 b 0.271860
2013-01-05 00:00:00 a -0.424972
b 0.567020
2013-01-05 12:00:00 a 0.276232
b -1.087401
[20 rows x 1 columns]
In [25]: dft2.loc["2013-01-05"]
Out[25]:
A
2013-01-05 00:00:00 a -0.424972
b 0.567020
2013-01-05 12:00:00 a 0.276232
b -1.087401
[4 rows x 1 columns]
On other levels
In [26]: idx = pd.IndexSlice
In [27]: dft2 = dft2.swaplevel(0, 1).sort_index()
In [28]: dft2
Out[28]:
A
a 2013-01-01 00:00:00 0.469112
2013-01-01 12:00:00 -1.509059
2013-01-02 00:00:00 1.212112
2013-01-02 12:00:00 0.119209
2013-01-03 00:00:00 -0.861849
... ...
b 2013-01-03 12:00:00 1.071804
2013-01-04 00:00:00 -0.706771
2013-01-04 12:00:00 0.271860
2013-01-05 00:00:00 0.567020
2013-01-05 12:00:00 -1.087401
[20 rows x 1 columns]
In [29]: dft2.loc[idx[:, "2013-01-05"], :]
Out[29]:
A
a 2013-01-05 00:00:00 -0.424972
2013-01-05 12:00:00 0.276232
b 2013-01-05 00:00:00 0.567020
2013-01-05 12:00:00 -1.087401
[4 rows x 1 columns]
Assembling datetimes¶
pd.to_datetime() has gained the ability to assemble datetimes from a passed in DataFrame or a dict. (GH8158).
In [30]: df = pd.DataFrame(
....: {"year": [2015, 2016], "month": [2, 3], "day": [4, 5], "hour": [2, 3]}
....: )
....:
In [31]: df
Out[31]:
year month day hour
0 2015 2 4 2
1 2016 3 5 3
[2 rows x 4 columns]
Assembling using the passed frame.
In [32]: pd.to_datetime(df)
Out[32]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
Length: 2, dtype: datetime64[ns]
You can pass only the columns that you need to assemble.
In [33]: pd.to_datetime(df[["year", "month", "day"]])
Out[33]:
0 2015-02-04
1 2016-03-05
Length: 2, dtype: datetime64[ns]
Other enhancements¶
pd.read_csv()now supportsdelim_whitespace=Truefor the Python engine (GH12958)pd.read_csv()now supports opening ZIP files that contains a single CSV, via extension inference or explicitcompression='zip'(GH12175)pd.read_csv()now supports opening files using xz compression, via extension inference or explicitcompression='xz'is specified;xzcompressions is also supported byDataFrame.to_csvin the same way (GH11852)pd.read_msgpack()now always gives writeable ndarrays even when compression is used (GH12359).pd.read_msgpack()now supports serializing and de-serializing categoricals with msgpack (GH12573).to_json()now supportsNDFramesthat contain categorical and sparse data (GH10778)interpolate()now supportsmethod='akima'(GH7588).pd.read_excel()now accepts path objects (e.g.pathlib.Path,py.path.local) for the file path, in line with otherread_*functions (GH12655)Added
.weekday_nameproperty as a component toDatetimeIndexand the.dtaccessor. (GH11128)Index.takenow handlesallow_fillandfill_valueconsistently (GH12631)In [34]: idx = pd.Index([1.0, 2.0, 3.0, 4.0], dtype="float") # default, allow_fill=True, fill_value=None In [35]: idx.take([2, -1]) Out[35]: Float64Index([3.0, 4.0], dtype='float64') In [36]: idx.take([2, -1], fill_value=True) Out[36]: Float64Index([3.0, nan], dtype='float64')
Indexnow supports.str.get_dummies()which returnsMultiIndex, see Creating Indicator Variables (GH10008, GH10103)In [37]: idx = pd.Index(["a|b", "a|c", "b|c"]) In [38]: idx.str.get_dummies("|") Out[38]: MultiIndex([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=['a', 'b', 'c'])
pd.crosstab()has gained anormalizeargument for normalizing frequency tables (GH12569). Examples in the updated docs here..resample(..).interpolate()is now supported (GH12925).isin()now accepts passedsets(GH12988)
Sparse changes¶
These changes conform sparse handling to return the correct types and work to make a smoother experience with indexing.
SparseArray.take now returns a scalar for scalar input, SparseArray for others. Furthermore, it handles a negative indexer with the same rule as Index (GH10560, GH12796)
s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
s.take(0)
s.take([1, 2, 3])
Bug in
SparseSeries[]indexing withEllipsisraisesKeyError(GH9467)Bug in
SparseArray[]indexing with tuples are not handled properly (GH12966)Bug in
SparseSeries.loc[]with list-like input raisesTypeError(GH10560)Bug in
SparseSeries.iloc[]with scalar input may raiseIndexError(GH10560)Bug in
SparseSeries.loc[],.iloc[]withslicereturnsSparseArray, rather thanSparseSeries(GH10560)Bug in
SparseDataFrame.loc[],.iloc[]may results in denseSeries, rather thanSparseSeries(GH12787)Bug in
SparseArrayaddition ignoresfill_valueof right hand side (GH12910)Bug in
SparseArraymod raisesAttributeError(GH12910)Bug in
SparseArraypow calculates1 ** np.nanasnp.nanwhich must be 1 (GH12910)Bug in
SparseArraycomparison output may incorrect result or raiseValueError(GH12971)Bug in
SparseSeries.__repr__raisesTypeErrorwhen it is longer thanmax_rows(GH10560)Bug in
SparseSeries.shapeignoresfill_value(GH10452)Bug in
SparseSeriesandSparseArraymay have differentdtypefrom its dense values (GH12908)Bug in
SparseSeries.reindexincorrectly handlefill_value(GH12797)Bug in
SparseArray.to_frame()results inDataFrame, rather thanSparseDataFrame(GH9850)Bug in
SparseSeries.value_counts()does not countfill_value(GH6749)Bug in
SparseArray.to_dense()does not preservedtype(GH10648)Bug in
SparseArray.to_dense()incorrectly handlefill_value(GH12797)Bug in
pd.concat()ofSparseSeriesresults in dense (GH10536)Bug in
pd.concat()ofSparseDataFrameincorrectly handlefill_value(GH9765)Bug in
pd.concat()ofSparseDataFramemay raiseAttributeError(GH12174)Bug in
SparseArray.shift()may raiseNameErrororTypeError(GH12908)
API changes¶
Method .groupby(..).nth() changes¶
The index in .groupby(..).nth() output is now more consistent when the as_index argument is passed (GH11039):
In [39]: df = pd.DataFrame({"A": ["a", "b", "a"], "B": [1, 2, 3]})
In [40]: df
Out[40]:
A B
0 a 1
1 b 2
2 a 3
[3 rows x 2 columns]
Previous behavior:
In [3]: df.groupby('A', as_index=True)['B'].nth(0)
Out[3]:
0 1
1 2
Name: B, dtype: int64
In [4]: df.groupby('A', as_index=False)['B'].nth(0)
Out[4]:
0 1
1 2
Name: B, dtype: int64
New behavior:
In [41]: df.groupby("A", as_index=True)["B"].nth(0)
Out[41]:
A
a 1
b 2
Name: B, Length: 2, dtype: int64
In [42]: df.groupby("A", as_index=False)["B"].nth(0)
Out[42]:
0 1
1 2
Name: B, Length: 2, dtype: int64
Furthermore, previously, a .groupby would always sort, regardless if sort=False was passed with .nth().
In [43]: np.random.seed(1234)
In [44]: df = pd.DataFrame(np.random.randn(100, 2), columns=["a", "b"])
In [45]: df["c"] = np.random.randint(0, 4, 100)
Previous behavior:
In [4]: df.groupby('c', sort=True).nth(1)
Out[4]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
In [5]: df.groupby('c', sort=False).nth(1)
Out[5]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
New behavior:
In [46]: df.groupby("c", sort=True).nth(1)
Out[46]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
[4 rows x 2 columns]
In [47]: df.groupby("c", sort=False).nth(1)
Out[47]:
a b
c
2 -0.720589 0.887163
3 0.859588 -0.636524
0 -0.334077 0.002118
1 0.036142 -2.074978
[4 rows x 2 columns]
NumPy function compatibility¶
Compatibility between pandas array-like methods (e.g. sum and take) and their numpy
counterparts has been greatly increased by augmenting the signatures of the pandas methods so
as to accept arguments that can be passed in from numpy, even if they are not necessarily
used in the pandas implementation (GH12644, GH12638, GH12687)
.searchsorted()forIndexandTimedeltaIndexnow accept asorterargument to maintain compatibility with numpy’ssearchsortedfunction (GH12238)Bug in numpy compatibility of
np.round()on aSeries(GH12600)
An example of this signature augmentation is illustrated below:
sp = pd.SparseDataFrame([1, 2, 3])
sp
Previous behaviour:
In [2]: np.cumsum(sp, axis=0)
...
TypeError: cumsum() takes at most 2 arguments (4 given)
New behaviour:
np.cumsum(sp, axis=0)
Using .apply on GroupBy resampling¶
Using apply on resampling groupby operations (using a pd.TimeGrouper) now has the same output types as similar apply calls on other groupby operations. (GH11742).
In [48]: df = pd.DataFrame(
....: {"date": pd.to_datetime(["10/10/2000", "11/10/2000"]), "value": [10, 13]}
....: )
....:
In [49]: df
Out[49]:
date value
0 2000-10-10 10
1 2000-11-10 13
[2 rows x 2 columns]
Previous behavior:
In [1]: df.groupby(pd.TimeGrouper(key='date',
...: freq='M')).apply(lambda x: x.value.sum())
Out[1]:
...
TypeError: cannot concatenate a non-NDFrame object
# Output is a Series
In [2]: df.groupby(pd.TimeGrouper(key='date',
...: freq='M')).apply(lambda x: x[['value']].sum())
Out[2]:
date
2000-10-31 value 10
2000-11-30 value 13
dtype: int64
New behavior:
# Output is a Series
In [55]: df.groupby(pd.TimeGrouper(key='date',
...: freq='M')).apply(lambda x: x.value.sum())
Out[55]:
date
2000-10-31 10
2000-11-30 13
Freq: M, dtype: int64
# Output is a DataFrame
In [56]: df.groupby(pd.TimeGrouper(key='date',
...: freq='M')).apply(lambda x: x[['value']].sum())
Out[56]:
value
date
2000-10-31 10
2000-11-30 13
Changes in read_csv exceptions¶
In order to standardize the read_csv API for both the c and python engines, both will now raise an
EmptyDataError, a subclass of ValueError, in response to empty columns or header (GH12493, GH12506)
Previous behaviour:
In [1]: import io
In [2]: df = pd.read_csv(io.StringIO(''), engine='c')
...
ValueError: No columns to parse from file
In [3]: df = pd.read_csv(io.StringIO(''), engine='python')
...
StopIteration
New behaviour:
In [1]: df = pd.read_csv(io.StringIO(''), engine='c')
...
pandas.io.common.EmptyDataError: No columns to parse from file
In [2]: df = pd.read_csv(io.StringIO(''), engine='python')
...
pandas.io.common.EmptyDataError: No columns to parse from file
In addition to this error change, several others have been made as well:
CParserErrornow sub-classesValueErrorinstead of just aException(GH12551)A
CParserErroris now raised instead of a genericExceptioninread_csvwhen thecengine cannot parse a column (GH12506)A
ValueErroris now raised instead of a genericExceptioninread_csvwhen thecengine encounters aNaNvalue in an integer column (GH12506)A
ValueErroris now raised instead of a genericExceptioninread_csvwhentrue_valuesis specified, and thecengine encounters an element in a column containing unencodable bytes (GH12506)pandas.parser.OverflowErrorexception has been removed and has been replaced with Python’s built-inOverflowErrorexception (GH12506)pd.read_csv()no longer allows a combination of strings and integers for theusecolsparameter (GH12678)
Method to_datetime error changes¶
Bugs in pd.to_datetime() when passing a unit with convertible entries and errors='coerce' or non-convertible with errors='ignore'. Furthermore, an OutOfBoundsDateime exception will be raised when an out-of-range value is encountered for that unit when errors='raise'. (GH11758, GH13052, GH13059)
Previous behaviour:
In [27]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[27]: NaT
In [28]: pd.to_datetime(11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long
In [29]: pd.to_datetime(11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long
New behaviour:
In [2]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[2]: Timestamp('2014-12-31 16:31:00')
In [3]: pd.to_datetime(11111111, unit='D', errors='ignore')
Out[3]: 11111111
In [4]: pd.to_datetime(11111111, unit='D', errors='raise')
OutOfBoundsDatetime: cannot convert input with unit 'D'
Other API changes¶
.swaplevel()forSeries,DataFrame,Panel, andMultiIndexnow features defaults for its first two parametersiandjthat swap the two innermost levels of the index. (GH12934).searchsorted()forIndexandTimedeltaIndexnow accept asorterargument to maintain compatibility with numpy’ssearchsortedfunction (GH12238)PeriodandPeriodIndexnow raisesIncompatibleFrequencyerror which inheritsValueErrorrather than rawValueError(GH12615)Series.applyfor category dtype now applies the passed function to each of the.categories(and not the.codes), and returns acategorydtype if possible (GH12473)read_csvwill now raise aTypeErrorifparse_datesis neither a boolean, list, or dictionary (matches the doc-string) (GH5636)The default for
.query()/.eval()is nowengine=None, which will usenumexprif it’s installed; otherwise it will fallback to thepythonengine. This mimics the pre-0.18.1 behavior ifnumexpris installed (and which, previously, if numexpr was not installed,.query()/.eval()would raise). (GH12749)pd.show_versions()now includespandas_datareaderversion (GH12740)Provide a proper
__name__and__qualname__attributes for generic functions (GH12021)pd.concat(ignore_index=True)now usesRangeIndexas default (GH12695)pd.merge()andDataFrame.join()will show aUserWarningwhen merging/joining a single- with a multi-leveled dataframe (GH9455, GH12219)Compat with
scipy> 0.17 for deprecatedpiecewise_polynomialinterpolation method; support for the replacementfrom_derivativesmethod (GH12887)
Performance improvements¶
Performance improvements in
.groupby(..).cumcount()(GH11039)Improved memory usage in
pd.read_csv()when usingskiprows=an_integer(GH13005)Improved performance of
DataFrame.to_sqlwhen checking case sensitivity for tables. Now only checks if table has been created correctly when table name is not lower case. (GH12876)Improved performance of
Periodconstruction and time series plotting (GH12903, GH11831).Improved performance of
.str.encode()and.str.decode()methods (GH13008)Improved performance of
to_numericif input is numeric dtype (GH12777)Improved performance of sparse arithmetic with
IntIndex(GH13036)
Bug fixes¶
usecolsparameter inpd.read_csvis now respected even when the lines of a CSV file are not even (GH12203)Bug in
groupby.transform(..)whenaxis=1is specified with a non-monotonic ordered index (GH12713)Bug in
PeriodandPeriodIndexcreation raisesKeyErroriffreq="Minute"is specified. Note that “Minute” freq is deprecated in v0.17.0, and recommended to usefreq="T"instead (GH11854)Bug in
.resample(...).count()with aPeriodIndexalways raising aTypeError(GH12774)Bug in
.resample(...)with aPeriodIndexcasting to aDatetimeIndexwhen empty (GH12868)Bug in
.resample(...)with aPeriodIndexwhen resampling to an existing frequency (GH12770)Bug in printing data which contains
Periodwith differentfreqraisesValueError(GH12615)Bug in
Seriesconstruction withCategoricalanddtype='category'is specified (GH12574)Bugs in concatenation with a coercible dtype was too aggressive, resulting in different dtypes in output formatting when an object was longer than
display.max_rows(GH12411, GH12045, GH11594, GH10571, GH12211)Bug in
float_formatoption with option not being validated as a callable. (GH12706)Bug in
GroupBy.filterwhendropna=Falseand no groups fulfilled the criteria (GH12768)Bug in
__name__of.cum*functions (GH12021)Bug in
.astype()of aFloat64Inde/Int64Indexto anInt64Index(GH12881)Bug in round tripping an integer based index in
.to_json()/.read_json()whenorient='index'(the default) (GH12866)Bug in plotting
Categoricaldtypes cause error when attempting stacked bar plot (GH13019)Compat with >=
numpy1.11 forNaTcomparisons (GH12969)Bug in
.drop()with a non-uniqueMultiIndex. (GH12701)Bug in
.concatof datetime tz-aware and naive DataFrames (GH12467)Bug in correctly raising a
ValueErrorin.resample(..).fillna(..)when passing a non-string (GH12952)Bug fixes in various encoding and header processing issues in
pd.read_sas()(GH12659, GH12654, GH12647, GH12809)Bug in
pd.crosstab()where would silently ignoreaggfuncifvalues=None(GH12569).Potential segfault in
DataFrame.to_jsonwhen serialisingdatetime.time(GH11473).Potential segfault in
DataFrame.to_jsonwhen attempting to serialise 0d array (GH11299).Segfault in
to_jsonwhen attempting to serialise aDataFrameorSerieswith non-ndarray values; now supports serialization ofcategory,sparse, anddatetime64[ns, tz]dtypes (GH10778).Bug in
DataFrame.to_jsonwith unsupported dtype not passed to default handler (GH12554).Bug in
.alignnot returning the sub-class (GH12983)Bug in aligning a
Serieswith aDataFrame(GH13037)Bug in
ABCPanelin whichPanel4Dwas not being considered as a valid instance of this generic type (GH12810)Bug in consistency of
.nameon.groupby(..).apply(..)cases (GH12363)Bug in
Timestamp.__repr__that causedpprintto fail in nested structures (GH12622)Bug in
Timedelta.minandTimedelta.max, the properties now report the true minimum/maximumtimedeltasas recognized by pandas. See the documentation. (GH12727)Bug in
.quantile()with interpolation may coerce tofloatunexpectedly (GH12772)Bug in
.quantile()with emptySeriesmay return scalar rather than emptySeries(GH12772)Bug in
.locwith out-of-bounds in a large indexer would raiseIndexErrorrather thanKeyError(GH12527)Bug in resampling when using a
TimedeltaIndexand.asfreq(), would previously not include the final fencepost (GH12926)Bug in equality testing with a
Categoricalin aDataFrame(GH12564)Bug in
GroupBy.first(),.last()returns incorrect row whenTimeGrouperis used (GH7453)Bug in
pd.read_csv()with thecengine when specifyingskiprowswith newlines in quoted items (GH10911, GH12775)Bug in
DataFrametimezone lost when assigning tz-aware datetimeSerieswith alignment (GH12981)Bug in
.value_counts()whennormalize=Trueanddropna=Truewhere nulls still contributed to the normalized count (GH12558)Bug in
Series.value_counts()loses name if its dtype iscategory(GH12835)Bug in
Series.value_counts()loses timezone info (GH12835)Bug in
Series.value_counts(normalize=True)withCategoricalraisesUnboundLocalError(GH12835)Bug in
Panel.fillna()ignoringinplace=True(GH12633)Bug in
pd.read_csv()when specifyingnames,usecols, andparse_datessimultaneously with thecengine (GH9755)Bug in
pd.read_csv()when specifyingdelim_whitespace=Trueandlineterminatorsimultaneously with thecengine (GH12912)Bug in
Series.rename,DataFrame.renameandDataFrame.rename_axisnot treatingSeriesas mappings to relabel (GH12623).Clean in
.rolling.minand.rolling.maxto enhance dtype handling (GH12373)Bug in
groupbywhere complex types are coerced to float (GH12902)Bug in
Series.mapraisesTypeErrorif its dtype iscategoryor tz-awaredatetime(GH12473)Bugs on 32bit platforms for some test comparisons (GH12972)
Bug in index coercion when falling back from
RangeIndexconstruction (GH12893)Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)
Bug in slicing subclassed
DataFramedefined to return subclassedSeriesmay return normalSeries(GH11559)Bug in
.straccessor methods may raiseValueErrorif input hasnameand the result isDataFrameorMultiIndex(GH12617)Bug in
DataFrame.last_valid_index()andDataFrame.first_valid_index()on empty frames (GH12800)Bug in
CategoricalIndex.get_locreturns different result from regularIndex(GH12531)Bug in
PeriodIndex.resamplewhere name not propagated (GH12769)Bug in
date_rangeclosedkeyword and timezones (GH12684).Bug in
pd.concatraisesAttributeErrorwhen input data contains tz-aware datetime and timedelta (GH12620)Bug in
pd.concatdid not handle emptySeriesproperly (GH11082)Bug in
.plot.baralignment whenwidthis specified withint(GH12979)Bug in
fill_valueis ignored if the argument to a binary operator is a constant (GH12723)Bug in
pd.read_html()when using bs4 flavor and parsing table with a header and only one column (GH9178)Bug in
.pivot_tablewhenmargins=Trueanddropna=Truewhere nulls still contributed to margin count (GH12577)Bug in
.pivot_tablewhendropna=Falsewhere table index/column names disappear (GH12133)Bug in
pd.crosstab()whenmargins=Trueanddropna=Falsewhich raised (GH12642)Bug in
Series.namewhennameattribute can be a hashable type (GH12610)Bug in
.describe()resets categorical columns information (GH11558)Bug where
loffsetargument was not applied when callingresample().count()on a timeseries (GH12725)pd.read_excel()now accepts column names associated with keyword argumentnames(GH12870)Bug in
pd.to_numeric()withIndexreturnsnp.ndarray, rather thanIndex(GH12777)Bug in
pd.to_numeric()with datetime-like may raiseTypeError(GH12777)Bug in
pd.to_numeric()with scalar raisesValueError(GH12777)
Contributors¶
A total of 60 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Andrew Fiore-Gartland +
Bastiaan +
Benoît Vinot +
Brandon Rhodes +
DaCoEx +
Drew Fustin +
Ernesto Freitas +
Filip Ter +
Gregory Livschitz +
Gábor Lipták
Hassan Kibirige +
Iblis Lin
Israel Saeta Pérez +
Jason Wolosonovich +
Jeff Reback
Joe Jevnik
Joris Van den Bossche
Joshua Storck +
Ka Wo Chen
Kerby Shedden
Kieran O’Mahony
Leif Walsh +
Mahmoud Lababidi +
Maoyuan Liu +
Mark Roth +
Matt Wittmann
MaxU +
Maximilian Roos
Michael Droettboom +
Nick Eubank
Nicolas Bonnotte
OXPHOS +
Pauli Virtanen +
Peter Waller +
Pietro Battiston
Prabhjot Singh +
Robin Wilson
Roger Thomas +
Sebastian Bank
Stephen Hoover
Tim Hopper +
Tom Augspurger
WANG Aiyong
Wes Turner
Winand +
Xbar +
Yan Facai +
adneu +
ajenkins-cargometrics +
behzad nouri
chinskiy +
gfyoung
jeps-journal +
jonaslb +
kotrfa +
nileracecrew +
onesandzeroes
rs2 +
sinhrks
tsdlovell +