Version 0.18.0 (March 13, 2016)¶
This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718, GH11273)
Warning
numexpr version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)
Highlights include:
Moving and expanding window functions are now methods on Series and DataFrame, similar to
.groupby, see here.Adding support for a
RangeIndexas a specialized form of theInt64Indexfor memory savings, see here.API breaking change to the
.resamplemethod to make it more.groupbylike, see here.Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a
TypeError, see here.The
.to_xarray()function has been added for compatibility with the xarray package, see here.The
read_sasfunction has been enhanced to readsas7bdatfiles, see here.Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.
pd.test()top-level nose test runner is available (GH4327).
Check the API Changes and deprecations before updating.
What’s new in v0.18.0
New features¶
Window functions are now methods¶
Window functions have been refactored to be methods on Series/DataFrame objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby. See the full documentation here (GH11603, GH12373)
In [1]: np.random.seed(1234)
In [2]: df = pd.DataFrame({'A': range(10), 'B': np.random.randn(10)})
In [3]: df
Out[3]:
A B
0 0 0.471435
1 1 -1.190976
2 2 1.432707
3 3 -0.312652
4 4 -0.720589
5 5 0.887163
6 6 0.859588
7 7 -0.636524
8 8 0.015696
9 9 -2.242685
[10 rows x 2 columns]
Previous behavior:
In [8]: pd.rolling_mean(df, window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with
DataFrame.rolling(window=3,center=False).mean()
Out[8]:
A B
0 NaN NaN
1 NaN NaN
2 1 0.237722
3 2 -0.023640
4 3 0.133155
5 4 -0.048693
6 5 0.342054
7 6 0.370076
8 7 0.079587
9 8 -0.954504
New behavior:
In [4]: r = df.rolling(window=3)
These show a descriptive repr
In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0]
with tab-completion of available methods and properties.
In [9]: r.<TAB> # noqa E225, E999
r.A r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum
r.B r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
The methods operate on the Rolling object itself
In [6]: r.mean()
Out[6]:
A B
0 NaN NaN
1 NaN NaN
2 1.0 0.237722
3 2.0 -0.023640
4 3.0 0.133155
5 4.0 -0.048693
6 5.0 0.342054
7 6.0 0.370076
8 7.0 0.079587
9 8.0 -0.954504
[10 rows x 2 columns]
They provide getitem accessors
In [7]: r['A'].mean()
Out[7]:
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
5 4.0
6 5.0
7 6.0
8 7.0
9 8.0
Name: A, Length: 10, dtype: float64
And multiple aggregations
In [8]: r.agg({'A': ['mean', 'std'],
...: 'B': ['mean', 'std']})
...:
Out[8]:
A B
mean std mean std
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 1.0 1.0 0.237722 1.327364
3 2.0 1.0 -0.023640 1.335505
4 3.0 1.0 0.133155 1.143778
5 4.0 1.0 -0.048693 0.835747
6 5.0 1.0 0.342054 0.920379
7 6.0 1.0 0.370076 0.871850
8 7.0 1.0 0.079587 0.750099
9 8.0 1.0 -0.954504 1.162285
[10 rows x 4 columns]
Changes to rename¶
Series.rename and NDFrame.rename_axis can now take a scalar or list-like
argument for altering the Series or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)
In [9]: s = pd.Series(np.random.randn(5))
In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, Length: 5, dtype: float64
In [11]: df = pd.DataFrame(np.random.randn(5, 2))
In [12]: (df.rename_axis("indexname")
....: .rename_axis("columns_name", axis="columns"))
....:
Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152
[5 rows x 2 columns]
The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a label to a new label. This continues to work as before for function or dict-like values.
Range Index¶
A RangeIndex has been added to the Int64Index sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python range object (xrange in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to Int64Index if needed.
This will now be the default constructed index for NDFrame objects, rather than previous an Int64Index. (GH939, GH12070, GH12071, GH12109, GH12888)
Previous behavior:
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
New behavior:
In [13]: s = pd.Series(range(1000))
In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)
In [15]: s.index.nbytes
Out[15]: 128
Changes to str.extract¶
The .str.extract method takes a regular expression with capture groups, finds the first match in each subject string, and returns the contents of the capture groups (GH11386).
In v0.18.0, the expand argument was added to
extract.
expand=False: it returns aSeries,Index, orDataFrame, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).expand=True: it always returns aDataFrame, which is more consistent and less confusing from the perspective of a user.
Currently the default is expand=None which gives a FutureWarning and uses expand=False. To avoid this warning, please explicitly specify expand.
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame)
but in a future version of pandas this will be changed to expand=True (return DataFrame)
Out[1]:
0 1
1 2
2 NaN
dtype: object
Extracting a regular expression with one group returns a Series if
expand=False.
In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)
Out[16]:
0 1
1 2
2 NaN
Length: 3, dtype: object
It returns a DataFrame with one column if expand=True.
In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)
Out[17]:
0
0 1
1 2
2 NaN
[3 rows x 1 columns]
Calling on an Index with a regex with exactly one capture group
returns an Index if expand=False.
In [18]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [19]: s.index
Out[19]: Index(['A11', 'B22', 'C33'], dtype='object')
In [20]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[20]: Index(['A', 'B', 'C'], dtype='object', name='letter')
It returns a DataFrame with one column if expand=True.
In [21]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[21]:
letter
0 A
1 B
2 C
[3 rows x 1 columns]
Calling on an Index with a regex with more than one capture group
raises ValueError if expand=False.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
It returns a DataFrame if expand=True.
In [22]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[22]:
letter 1
0 A 11
1 B 22
2 C 33
[3 rows x 2 columns]
In summary, extract(expand=True) always returns a DataFrame
with a row for every subject string, and a column for every capture
group.
Addition of str.extractall¶
The .str.extractall method was added
(GH11386). Unlike extract, which returns only the first
match.
In [23]: s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])
In [24]: s
Out[24]:
A a1a2
B b1
C c1
Length: 3, dtype: object
In [25]: s.str.extract(r"(?P<letter>[ab])(?P<digit>\d)", expand=False)
Out[25]:
letter digit
A a 1
B b 1
C NaN NaN
[3 rows x 2 columns]
The extractall method returns all matches.
In [26]: s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)")
Out[26]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
[3 rows x 2 columns]
Changes to str.cat¶
The method .str.cat() concatenates the members of a Series. Before, if NaN values were present in the Series, calling .str.cat() on it would return NaN, unlike the rest of the Series.str.* API. This behavior has been amended to ignore NaN values by default. (GH11435).
A new, friendlier ValueError is added to protect against the mistake of supplying the sep as an arg, rather than as a kwarg. (GH11334).
In [27]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ')
Out[27]: 'a b c'
In [28]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ', na_rep='?')
Out[28]: 'a b ? c'
In [2]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(' ')
ValueError: Did you mean to supply a ``sep`` keyword?
Datetimelike rounding¶
DatetimeIndex, Timestamp, TimedeltaIndex, Timedelta have gained the .round(), .floor() and .ceil() method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)
Naive datetimes
In [29]: dr = pd.date_range('20130101 09:12:56.1234', periods=3)
In [30]: dr
Out[30]:
DatetimeIndex(['2013-01-01 09:12:56.123400', '2013-01-02 09:12:56.123400',
'2013-01-03 09:12:56.123400'],
dtype='datetime64[ns]', freq='D')
In [31]: dr.round('s')
Out[31]:
DatetimeIndex(['2013-01-01 09:12:56', '2013-01-02 09:12:56',
'2013-01-03 09:12:56'],
dtype='datetime64[ns]', freq=None)
# Timestamp scalar
In [32]: dr[0]
Out[32]: Timestamp('2013-01-01 09:12:56.123400', freq='D')
In [33]: dr[0].round('10s')
Out[33]: Timestamp('2013-01-01 09:13:00')
Tz-aware are rounded, floored and ceiled in local times
In [34]: dr = dr.tz_localize('US/Eastern')
In [35]: dr
Out[35]:
DatetimeIndex(['2013-01-01 09:12:56.123400-05:00',
'2013-01-02 09:12:56.123400-05:00',
'2013-01-03 09:12:56.123400-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
In [36]: dr.round('s')
Out[36]:
DatetimeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
'2013-01-03 09:12:56-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
Timedeltas
In [37]: t = pd.timedelta_range('1 days 2 hr 13 min 45 us', periods=3, freq='d')
In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',
'3 days 02:13:00.000045'],
dtype='timedelta64[ns]', freq='D')
In [39]: t.round('10min')
Out[39]: TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'], dtype='timedelta64[ns]', freq=None)
# Timedelta scalar
In [40]: t[0]
Out[40]: Timedelta('1 days 02:13:00.000045')
In [41]: t[0].round('2h')
Out[41]: Timedelta('1 days 02:00:00')
In addition, .round(), .floor() and .ceil() will be available through the .dt accessor of Series.
In [42]: s = pd.Series(dr)
In [43]: s
Out[43]:
0 2013-01-01 09:12:56.123400-05:00
1 2013-01-02 09:12:56.123400-05:00
2 2013-01-03 09:12:56.123400-05:00
Length: 3, dtype: datetime64[ns, US/Eastern]
In [44]: s.dt.round('D')
Out[44]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
Length: 3, dtype: datetime64[ns, US/Eastern]
Formatting of integers in FloatIndex¶
Integers in FloatIndex, e.g. 1., are now formatted with a decimal point and a 0 digit, e.g. 1.0 (GH11713)
This change not only affects the display to the console, but also the output of IO methods like .to_csv or .to_html.
Previous behavior:
In [2]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
New behavior:
In [45]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
Length: 3, dtype: int64
In [47]: s.index
Out[47]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [48]: print(s.to_csv(path_or_buf=None, header=False))
0.0,1
1.0,2
2.0,3
Changes to dtype assignment behaviors¶
When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (GH10503)
Previous behavior:
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})
In [7]: df.dtypes
Out[7]:
a int64
b uint32
dtype: object
In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
a int64
b int64
dtype: object
New behavior:
In [49]: df = pd.DataFrame({'a': [0, 1, 1],
....: 'b': pd.Series([100, 200, 300], dtype='uint32')})
....:
In [50]: df.dtypes
Out[50]:
a int64
b uint32
Length: 2, dtype: object
In [51]: ix = df['a'] == 1
In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [53]: df.dtypes
Out[53]:
a int64
b uint32
Length: 2, dtype: object
When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be down-casted to integer without losing precision, the dtype of the slice will be set to float instead of integer.
Previous behavior:
In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])
In [5]: df
Out[5]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
a b c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
New behavior:
In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
....: columns=list('abc'),
....: index=[[4,4,8], [8,10,12]])
....:
In [55]: df
Out[55]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
[3 rows x 3 columns]
In [56]: df.loc[4, 'c'] = np.array([0., 1.])
In [57]: df
Out[57]:
a b c
4 8 1 2 0.0
10 4 5 1.0
8 12 7 8 9.0
[3 rows x 3 columns]
Method to_xarray¶
In a future version of pandas, we will be deprecating Panel and other > 2 ndim objects. In order to provide for continuity,
all NDFrame objects have gained the .to_xarray() method in order to convert to xarray objects, which has
a pandas-like interface for > 2 ndim. (GH11972)
See the xarray full-documentation here.
In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))
In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Coordinates:
* items (items) int64 0 1
* major_axis (major_axis) int64 0 1 2
* minor_axis (minor_axis) int64 0 1 2 3
Latex representation¶
DataFrame has gained a ._repr_latex_() method in order to allow for conversion to latex in a ipython/jupyter notebook using nbconvert. (GH11778)
Note that this must be activated by setting the option pd.display.latex.repr=True (GH12182)
For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement pd.display.latex.repr=True in the first cell to have the contained DataFrame output also stored as latex.
The options display.latex.escape and display.latex.longtable have also been added to the configuration and are used automatically by the to_latex
method. See the available options docs for more info.
pd.read_sas() changes¶
read_sas has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see here. (GH4052)
Other enhancements¶
Handle truncated floats in SAS xport files (GH11713)
Added option to hide index in
Series.to_string(GH11729)read_excelnow supports s3 urls of the formats3://bucketname/filename(GH11447)add support for
AWS_S3_HOSTenv variable when reading from s3 (GH12198)A simple version of
Panel.round()is now implemented (GH11763)For Python 3.x,
round(DataFrame),round(Series),round(Panel)will work (GH11763)sys.getsizeof(obj)returns the memory usage of a pandas object, including the values it contains (GH11597)Seriesgained anis_uniqueattribute (GH11946)DataFrame.quantileandSeries.quantilenow acceptinterpolationkeyword (GH10174).Added
DataFrame.style.formatfor more flexible formatting of cell values (GH11692)DataFrame.select_dtypesnow allows thenp.float16type code (GH11990)pivot_table()now accepts most iterables for thevaluesparameter (GH12017)Added Google
BigQueryservice account authentication support, which enables authentication on remote servers. (GH11881, GH12572). For further details see hereHDFStoreis now iterable:for k in storeis equivalent tofor k in store.keys()(GH12221).Add missing methods/fields to
.dtforPeriod(GH8848)The entire code base has been
PEP-ified (GH12096)
Backwards incompatible API changes¶
the leading white spaces have been removed from the output of
.to_string(index=False)method (GH11833)the
outparameter has been removed from theSeries.round()method. (GH11763)DataFrame.round()leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)DataFrame.head(0)andDataFrame.tail(0)return empty frames, rather thanself. (GH11937)Series.head(0)andSeries.tail(0)return empty series, rather thanself. (GH11937)to_msgpackandread_msgpackencoding now defaults to'utf-8'. (GH12170)the order of keyword arguments to text file parsing functions (
.read_csv(),.read_table(),.read_fwf()) changed to group related arguments. (GH11555)NaTType.isoformatnow returns the string'NaTto allow the result to be passed to the constructor ofTimestamp. (GH12300)
NaT and Timedelta operations¶
NaT and Timedelta have expanded arithmetic operations, which are extended to Series
arithmetic where applicable. Operations defined for datetime64[ns] or timedelta64[ns]
are now also defined for NaT (GH11564).
NaT now supports arithmetic operations with integers and floats.
In [58]: pd.NaT * 1
Out[58]: NaT
In [59]: pd.NaT * 1.5
Out[59]: NaT
In [60]: pd.NaT / 2
Out[60]: NaT
In [61]: pd.NaT * np.nan
Out[61]: NaT
NaT defines more arithmetic operations with datetime64[ns] and timedelta64[ns].
In [62]: pd.NaT / pd.NaT
Out[62]: nan
In [63]: pd.Timedelta('1s') / pd.NaT
Out[63]: nan
NaT may represent either a datetime64[ns] null or a timedelta64[ns] null.
Given the ambiguity, it is treated as a timedelta64[ns], which allows more operations
to succeed.
In [64]: pd.NaT + pd.NaT
Out[64]: NaT
# same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
Out[65]: Timedelta('0 days 00:00:02')
as opposed to
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
However, when wrapped in a Series whose dtype is datetime64[ns] or timedelta64[ns],
the dtype information is respected.
In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction,
but the operator [__add__] was passed
In [66]: pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
Out[66]:
0 NaT
Length: 1, dtype: timedelta64[ns]
Timedelta division by floats now works.
In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')
Subtraction by Timedelta in a Series by a Timestamp works (GH11925)
In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))
In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
Length: 3, dtype: timedelta64[ns]
In [70]: pd.Timestamp('2012-01-01') - ser
Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
Length: 3, dtype: datetime64[ns]
NaT.isoformat() now returns 'NaT'. This change allows
pd.Timestamp to rehydrate any timestamp like object from its isoformat
(GH12300).
Changes to msgpack¶
Forward incompatible changes in msgpack writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (GH12129, GH10527)
Bugs in to_msgpack and read_msgpack introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.
Warning
Packed with |
Can be unpacked with |
|---|---|
pre-0.17 / Python 2 |
any |
pre-0.17 / Python 3 |
any |
0.17 / Python 2 |
|
0.17 / Python 3 |
>=0.18 / any Python |
0.18 |
>= 0.18 |
0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
Signature change for .rank¶
Series.rank and DataFrame.rank now have the same signature (GH11759)
Previous signature
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
ascending=True, pct=False)
Out[3]:
0 1
1 2
dtype: float64
In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
method='average', na_option='keep',
ascending=True, pct=False)
Out[4]:
0
0 1
1 2
New signature
In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:
Out[71]:
0 1.0
1 2.0
Length: 2, dtype: float64
In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:
Out[72]:
0
0 1.0
1 2.0
[2 rows x 1 columns]
Bug in QuarterBegin with n=0¶
In previous versions, the behavior of the QuarterBegin offset was inconsistent
depending on the date when the n parameter was 0. (GH11406)
The general semantics of anchored offsets for n=0 is to not move the date
when it is an anchor point (e.g., a quarter start date), and otherwise roll
forward to the next anchor point.
In [73]: d = pd.Timestamp('2014-02-01')
In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')
In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[75]: Timestamp('2014-02-01 00:00:00')
In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
Out[76]: Timestamp('2014-04-01 00:00:00')
For the QuarterBegin offset in previous versions, the date would be rolled
backwards if date was in the same month as the quarter start date.
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')
This behavior has been corrected in version 0.18.0, which is consistent with
other anchored offsets like MonthBegin and YearBegin.
In [77]: d = pd.Timestamp('2014-02-15')
In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')
Resample API¶
Like the change in the window functions API above, .resample(...) is changing to have a more groupby-like API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).
In [79]: np.random.seed(1234)
In [80]: df = pd.DataFrame(np.random.rand(10,4),
....: columns=list('ABCD'),
....: index=pd.date_range('2010-01-01 09:00:00',
....: periods=10, freq='s'))
....:
In [81]: df
Out[81]:
A B C D
2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196
2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316
[10 rows x 4 columns]
Previous API:
You would write a resampling operation that immediately evaluates. If a how parameter was not provided, it
would default to how='mean'.
In [6]: df.resample('2s')
Out[6]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
You could also specify a how directly
In [7]: df.resample('2s', how='sum')
Out[7]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
New API:
Now, you can write .resample(..) as a 2-stage operation like .groupby(...), which
yields a Resampler.
In [82]: r = df.resample('2s')
In [83]: r
Out[83]: <pandas.core.resample.DatetimeIndexResampler object at 0x7f5b4467d280>
Downsampling¶
You can then use this object to perform operations. These are downsampling operations (going from a higher frequency to a lower one).
In [84]: r.mean()
Out[84]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
[5 rows x 4 columns]
In [85]: r.sum()
Out[85]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
[5 rows x 4 columns]
Furthermore, resample now supports getitem operations to perform the resample on specific columns.
In [86]: r[['A','C']].mean()
Out[86]:
A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.633165
2010-01-01 09:00:08 0.510470 0.573201
[5 rows x 2 columns]
and .aggregate type operations.
In [87]: r.agg({'A' : 'mean', 'B' : 'sum'})
Out[87]:
A B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634
[5 rows x 2 columns]
These accessors can of course, be combined
In [88]: r[['A','B']].agg(['mean','sum'])
Out[88]:
A B
mean sum mean sum
2010-01-01 09:00:00 0.485748 0.971495 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.641602 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.867969 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.249976 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.020940 0.534317 1.068634
[5 rows x 4 columns]
Upsampling¶
Upsampling operations take you from a lower frequency to a higher frequency. These are now
performed with the Resampler objects with backfill(),
ffill(), fillna() and asfreq() methods.
In [89]: s = pd.Series(np.arange(5, dtype='int64'),
....: index=pd.date_range('2010-01-01', periods=5, freq='Q'))
....:
In [90]: s
Out[90]:
2010-03-31 0
2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, Length: 5, dtype: int64
Previously
In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
New API
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, Length: 13, dtype: int64
Note
In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like mean) even though you were upsampling, providing a bit of confusion.
Previous API will work but with deprecations¶
Warning
This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:
In [4]: r = df.resample('2s')
In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
Out[6]:
A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
However, getting and assignment operations directly on a Resampler will raise a ValueError:
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
There is a situation where the new API can not perform all the operations when using original code.
This code is intending to resample every 2s, take the mean AND then take the min of those results.
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
The new API will:
In [92]: df.resample('2s').min()
Out[92]:
A B C D
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581
[5 rows x 4 columns]
The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise an exception.
To replicate the original operation
In [93]: df.resample('2s').mean().min()
Out[93]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
Length: 4, dtype: float64
Changes to eval¶
In prior versions, new columns assignments in an eval expression resulted
in an inplace change to the DataFrame. (GH9297, GH8664, GH10486)
In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})
In [95]: df
Out[95]:
a b
0 0.0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4
[5 rows x 2 columns]
In [12]: df.eval('c = a + b')
FutureWarning: eval expressions containing an assignment currentlydefault to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
In [13]: df
Out[13]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In version 0.18.0, a new inplace keyword was added to choose whether the
assignment should be done inplace or return a copy.
In [96]: df
Out[96]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
[5 rows x 3 columns]
In [97]: df.eval('d = c - b', inplace=False)
Out[97]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[5 rows x 4 columns]
In [98]: df
Out[98]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
[5 rows x 3 columns]
In [99]: df.eval('d = c - b', inplace=True)
In [100]: df
Out[100]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[5 rows x 4 columns]
Warning
For backwards compatibility, inplace defaults to True if not specified.
This will change in a future version of pandas. If your code depends on an
inplace assignment you should update to explicitly set inplace=True
The inplace keyword parameter was also added the query method.
In [101]: df.query('a > 5')
Out[101]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
In [102]: df.query('a > 5', inplace=True)
In [103]: df
Out[103]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
Warning
Note that the default value for inplace in a query
is False, which is consistent with prior versions.
eval has also been updated to allow multi-line expressions for multiple
assignments. These expressions will be evaluated one at a time in order. Only
assignments are valid for multi-line expressions.
In [104]: df
Out[104]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
In [105]: df.eval("""
.....: e = d + a
.....: f = e - 22
.....: g = f / 2.0""", inplace=True)
.....:
In [106]: df
Out[106]:
a b c d e f g
3 7.5 3 10.5 7.5 15.0 -7.0 -3.5
4 10.0 4 14.0 10.0 20.0 -2.0 -1.0
[2 rows x 7 columns]
Other API changes¶
DataFrame.between_timeandSeries.between_timenow only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises aValueError. (GH11818)In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H', periods=10)) In [108]: s.between_time("7:00am", "9:00am") Out[108]: 2015-01-01 07:00:00 7 2015-01-01 08:00:00 8 2015-01-01 09:00:00 9 Freq: H, Length: 3, dtype: int64
This will now raise.
In [2]: s.between_time('20150101 07:00:00','20150101 09:00:00') ValueError: Cannot convert arg ['20150101 07:00:00'] to a time.
.memory_usage()now includes values in the index, as does memory_usage in.info()(GH11597)DataFrame.to_latex()now supports non-ascii encodings (egutf-8) in Python 2 with the parameterencoding(GH7061)pandas.merge()andDataFrame.merge()will show a specific error message when trying to merge with an object that is not of typeDataFrameor a subclass (GH12081)DataFrame.unstackandSeries.unstacknow takefill_valuekeyword to allow direct replacement of missing values when an unstack results in missing values in the resultingDataFrame. As an added benefit, specifyingfill_valuewill preserve the data type of the original stacked data. (GH9746)As part of the new API for window functions and resampling, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in groupby.
Statistical functions for
NDFrameobjects (likesum(), mean(), min()) will now raise if non-numpy-compatible arguments are passed in for**kwargs(GH12301).to_latexand.to_htmlgain adecimalparameter like.to_csv; the default is'.'(GH12031)More helpful error message when constructing a
DataFramewith empty data but with indices (GH8020).describe()will now properly handle bool dtype as a categorical (GH6625)More helpful error message with an invalid
.transformwith user defined input (GH10165)Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise
ValueErrorif parameters violate0 < alpha <= 1(GH12492)
Deprecations¶
The functions
pd.rolling_*,pd.expanding_*, andpd.ewm*are deprecated and replaced by the corresponding method call. Note that the new suggested syntax includes all of the arguments (even if default) (GH11603)In [1]: s = pd.Series(range(3)) In [2]: pd.rolling_mean(s,window=2,min_periods=1) FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with Series.rolling(min_periods=1,window=2,center=False).mean() Out[2]: 0 0.0 1 0.5 2 1.5 dtype: float64 In [3]: pd.rolling_cov(s, s, window=2) FutureWarning: pd.rolling_cov is deprecated for Series and will be removed in a future version, replace with Series.rolling(window=2).cov(other=<Series>) Out[3]: 0 NaN 1 0.5 2 0.5 dtype: float64
The
freqandhowarguments to the.rolling,.expanding, and.ewm(new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (GH11603).For example, instead of
s.rolling(window=5,freq='D').max()to get the max value on a rolling 5 Day window, one could uses.resample('D').mean().rolling(window=5).max(), which first resamples the data to daily data, then provides a rolling 5 day window.pd.tseries.frequencies.get_offset_namefunction is deprecated. Use offset’s.freqstrproperty as alternative (GH11192)pandas.stats.fama_macbethroutines are deprecated and will be removed in a future version (GH6077)pandas.stats.ols,pandas.stats.plmandpandas.stats.varroutines are deprecated and will be removed in a future version (GH6077)show a
FutureWarningrather than aDeprecationWarningon using long-time deprecated syntax inHDFStore.select, where thewhereclause is not a string-like (GH12027)The
pandas.options.display.mpl_styleconfiguration has been deprecated and will be removed in a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).
Removal of deprecated float indexers¶
In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0).
In 0.18.0, this deprecation warning is removed and these will now raise a TypeError. (GH12165, GH12333)
In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])
In [110]: s
Out[110]:
4 1
5 2
6 3
Length: 3, dtype: int64
In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))
In [112]: s2
Out[112]:
a 1
b 2
c 3
Length: 3, dtype: int64
Previous behavior:
# this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2
# this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[3]: 2
# this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[4]: 2
# .ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not floating point
In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64
New behavior:
For iloc, getting & setting via a float scalar will always raise.
In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [2.0] of <type 'float'>
Other indexers will coerce to a like integer for both getting and setting. The FutureWarning has been dropped for .loc, .ix and [].
In [113]: s[5.0]
Out[113]: 2
In [114]: s.loc[5.0]
Out[114]: 2
and setting
In [115]: s_copy = s.copy()
In [116]: s_copy[5.0] = 10
In [117]: s_copy
Out[117]:
4 1
5 10
6 3
Length: 3, dtype: int64
In [118]: s_copy = s.copy()
In [119]: s_copy.loc[5.0] = 10
In [120]: s_copy
Out[120]:
4 1
5 10
6 3
Length: 3, dtype: int64
Positional setting with .ix and a float indexer will ADD this value to the index, rather than previously setting the value by position.
In [3]: s2.ix[1.0] = 10
In [4]: s2
Out[4]:
a 1
b 2
c 3
1.0 10
dtype: int64
Slicing will also coerce integer-like floats to integers for a non-Float64Index.
In [121]: s.loc[5.0:6]
Out[121]:
5 2
6 3
Length: 2, dtype: int64
Note that for floats that are NOT coercible to ints, the label based bounds will be excluded
In [122]: s.loc[5.1:6]
Out[122]:
6 3
Length: 1, dtype: int64
Float indexing on a Float64Index is unchanged.
In [123]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [124]: s[1.0]
Out[124]: 2
In [125]: s[1.0:2.5]
Out[125]:
1.0 2
2.0 3
Length: 2, dtype: int64
Removal of prior version deprecations/changes¶
Removal of
rolling_corr_pairwisein favor of.rolling().corr(pairwise=True)(GH4950)Removal of
expanding_corr_pairwisein favor of.expanding().corr(pairwise=True)(GH4950)Removal of
DataMatrixmodule. This was not imported into the pandas namespace in any event (GH12111)Removal of
colskeyword in favor ofsubsetinDataFrame.duplicated()andDataFrame.drop_duplicates()(GH6680)Removal of the
read_frameandframe_query(both aliases forpd.read_sql) andwrite_frame(alias ofto_sql) functions in thepd.io.sqlnamespace, deprecated since 0.14.0 (GH6292).Removal of the
orderkeyword from.factorize()(GH6930)
Performance improvements¶
Improved performance of
andrews_curves(GH11534)Improved huge
DatetimeIndex,PeriodIndexandTimedeltaIndex’s ops performance includingNaT(GH10277)Improved performance of
pandas.concat(GH11958)Improved performance of
StataReader(GH11591)Improved performance in construction of
CategoricalswithSeriesof datetimes containingNaT(GH12077)Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros (GH11871) and with white space preceding the time zone (GH9714)
Bug fixes¶
Bug in
GroupBy.sizewhen data-frame is empty. (GH11699)Bug in
Period.end_timewhen a multiple of time period is requested (GH11738)Regression in
.clipwith tz-aware datetimes (GH11838)Bug in
date_rangewhen the boundaries fell on the frequency (GH11804, GH12409)Bug in consistency of passing nested dicts to
.groupby(...).agg(...)(GH9052)Accept unicode in
Timedeltaconstructor (GH11995)Bug in value label reading for
StataReaderwhen reading incrementally (GH12014)Bug in vectorized
DateOffsetwhennparameter is0(GH11370)Compat for numpy 1.11 w.r.t.
NaTcomparison changes (GH12049)Bug in
read_csvwhen reading from aStringIOin threads (GH11790)Bug in not treating
NaTas a missing value in datetimelikes when factorizing & withCategoricals(GH12077)Bug in getitem when the values of a
Serieswere tz-aware (GH12089)Bug in
Series.str.get_dummieswhen one of the variables was ‘name’ (GH12180)Bug in
pd.concatwhile concatenating tz-aware NaT series. (GH11693, GH11755, GH12217)Bug in
pd.read_statawith version <= 108 files (GH12232)Bug in
Series.resampleusing a frequency ofNanowhen the index is aDatetimeIndexand contains non-zero nanosecond parts (GH12037)Bug in resampling with
.nuniqueand a sparse index (GH12352)Removed some compiler warnings (GH12471)
Work around compat issues with
botoin python 3.5 (GH11915)Bug in
NaTsubtraction fromTimestamporDatetimeIndexwith timezones (GH11718)Bug in subtraction of
Seriesof a single tz-awareTimestamp(GH12290)Use compat iterators in PY2 to support
.next()(GH12299)Bug in
Timedelta.roundwith negative values (GH11690)Bug in
.locagainstCategoricalIndexmay result in normalIndex(GH11586)Bug in
DataFrame.infowhen duplicated column names exist (GH11761)Bug in
.copyof datetime tz-aware objects (GH11794)Bug in
Series.applyandSeries.mapwheretimedelta64was not boxed (GH11349)Bug in
DataFrame.set_index()with tz-awareSeries(GH12358)Bug in subclasses of
DataFramewhereAttributeErrordid not propagate (GH11808)Bug groupby on tz-aware data where selection not returning
Timestamp(GH11616)Bug in
pd.read_clipboardandpd.to_clipboardfunctions not supporting Unicode; upgrade includedpyperclipto v1.5.15 (GH9263)Bug in
DataFrame.querycontaining an assignment (GH8664)Bug in
from_msgpackwhere__contains__()fails for columns of the unpackedDataFrame, if theDataFramehas object columns. (GH11880)Bug in
.resampleon categorical data withTimedeltaIndex(GH12169)Bug in timezone info lost when broadcasting scalar datetime to
DataFrame(GH11682)Bug in
Indexcreation fromTimestampwith mixed tz coerces to UTC (GH11488)Bug in
to_numericwhere it does not raise if input is more than one dimension (GH11776)Bug in parsing timezone offset strings with non-zero minutes (GH11708)
Bug in
df.plotusing incorrect colors for bar plots under matplotlib 1.5+ (GH11614)Bug in the
groupbyplotmethod when using keyword arguments (GH11805).Bug in
DataFrame.duplicatedanddrop_duplicatescausing spurious matches when settingkeep=False(GH11864)Bug in
.locresult with duplicated key may haveIndexwith incorrect dtype (GH11497)Bug in
pd.rolling_medianwhere memory allocation failed even with sufficient memory (GH11696)Bug in
DataFrame.stylewith spurious zeros (GH12134)Bug in
DataFrame.stylewith integer columns not starting at 0 (GH12125)Bug in
.style.barmay not rendered properly using specific browser (GH11678)Bug in rich comparison of
Timedeltawith anumpy.arrayofTimedeltathat caused an infinite recursion (GH11835)Bug in
DataFrame.rounddropping column index name (GH11986)Bug in
df.replacewhile replacing value in mixed dtypeDataframe(GH11698)Bug in
Indexprevents copying name of passedIndex, when a new name is not provided (GH11193)Bug in
read_excelfailing to read any non-empty sheets when empty sheets exist andsheetname=None(GH11711)Bug in
read_excelfailing to raiseNotImplementederror when keywordsparse_datesanddate_parserare provided (GH11544)Bug in
read_sqlwithpymysqlconnections failing to return chunked data (GH11522)Bug in
.to_csvignoring formatting parametersdecimal,na_rep,float_formatfor float indexes (GH11553)Bug in
Int64IndexandFloat64Indexpreventing the use of the modulo operator (GH9244)Bug in
MultiIndex.dropfor not lexsorted MultiIndexes (GH12078)Bug in
DataFramewhen masking an emptyDataFrame(GH11859)Bug in
.plotpotentially modifying thecolorsinput when the number of columns didn’t match the number of series provided (GH12039).Bug in
Series.plotfailing when index has aCustomBusinessDayfrequency (GH7222).Bug in
.to_sqlfordatetime.timevalues with sqlite fallback (GH8341)Bug in
read_excelfailing to read data with one column whensqueeze=True(GH12157)Bug in
read_excelfailing to read one empty column (GH12292, GH9002)Bug in
.groupbywhere aKeyErrorwas not raised for a wrong column if there was only one row in the dataframe (GH11741)Bug in
.read_csvwith dtype specified on empty data producing an error (GH12048)Bug in
.read_csvwhere strings like'2E'are treated as valid floats (GH12237)Bug in building pandas with debugging symbols (GH12123)
Removed
millisecondproperty ofDatetimeIndex. This would always raise aValueError(GH12019).Bug in
Seriesconstructor with read-only data (GH11502)Removed
pandas._testing.choice(). Should usenp.random.choice(), instead. (GH12386)Bug in
.locsetitem indexer preventing the use of a TZ-aware DatetimeIndex (GH12050)Bug in
.styleindexes and MultiIndexes not appearing (GH11655)Bug in
to_msgpackandfrom_msgpackwhich did not correctly serialize or deserializeNaT(GH12307).Bug in
.skewand.kurtdue to roundoff error for highly similar values (GH11974)Bug in
Timestampconstructor where microsecond resolution was lost if HHMMSS were not separated with ‘:’ (GH10041)Bug in
buffer_rd_bytessrc->buffer could be freed more than once if reading failed, causing a segfault (GH12098)Bug in
crosstabwhere arguments with non-overlapping indexes would return aKeyError(GH10291)Bug in
DataFrame.applyin which reduction was not being prevented for cases in whichdtypewas not a numpy dtype (GH12244)Bug when initializing categorical series with a scalar value. (GH12336)
Bug when specifying a UTC
DatetimeIndexby settingutc=Truein.to_datetime(GH11934)Bug when increasing the buffer size of CSV reader in
read_csv(GH12494)Bug when setting columns of a
DataFramewith duplicate column names (GH12344)
Contributors¶
A total of 101 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
ARF +
Alex Alekseyev +
Andrew McPherson +
Andrew Rosenfeld
Andy Hayden
Anthonios Partheniou
Anton I. Sipos
Ben +
Ben North +
Bran Yang +
Chris
Chris Carroux +
Christopher C. Aycock +
Christopher Scanlin +
Cody +
Da Wang +
Daniel Grady +
Dorozhko Anton +
Dr-Irv +
Erik M. Bray +
Evan Wright
Francis T. O’Donovan +
Frank Cleary +
Gianluca Rossi
Graham Jeffries +
Guillaume Horel
Henry Hammond +
Isaac Schwabacher +
Jean-Mathieu Deschenes
Jeff Reback
Joe Jevnik +
John Freeman +
John Fremlin +
Jonas Hoersch +
Joris Van den Bossche
Joris Vankerschaver
Justin Lecher
Justin Lin +
Ka Wo Chen
Keming Zhang +
Kerby Shedden
Kyle +
Marco Farrugia +
MasonGallo +
MattRijk +
Matthew Lurie +
Maximilian Roos
Mayank Asthana +
Mortada Mehyar
Moussa Taifi +
Navreet Gill +
Nicolas Bonnotte
Paul Reiners +
Philip Gura +
Pietro Battiston
RahulHP +
Randy Carnevale
Rinoc Johnson
Rishipuri +
Sangmin Park +
Scott E Lasley
Sereger13 +
Shannon Wang +
Skipper Seabold
Thierry Moisan
Thomas A Caswell
Toby Dylan Hocking +
Tom Augspurger
Travis +
Trent Hauck
Tux1
Varun
Wes McKinney
Will Thompson +
Yoav Ram
Yoong Kang Lim +
Yoshiki Vázquez Baeza
Young Joong Kim +
Younggun Kim
Yuval Langer +
alex argunov +
behzad nouri
boombard +
brian-pantano +
chromy +
daniel +
dgram0 +
gfyoung +
hack-c +
hcontrast +
jfoo +
kaustuv deolal +
llllllllll
ranarag +
rockg
scls19fr
seales +
sinhrks
srib +
surveymedia.ca +
tworec +