Version 0.13.1 (February 3, 2014)¶
This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
Added
infer_datetime_formatkeyword toread_csv/to_datetimeto allow speedups for homogeneously formatted datetimes.Will intelligently limit display precision for datetime/timedelta formats.
Enhanced Panel
apply()method.Suggested tutorials in new Tutorials section.
Our pandas ecosystem is growing, We now feature related projects in a new Pandas Ecosystem section.
Much work has been taking place on improving the docs, and a new Contributing section has been added.
Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.
Warning
0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.
This would previously segfault:
In [1]: df = pd.DataFrame({"A": np.array(["foo", "bar", "bah", "foo", "bar"])})
In [2]: df["A"].iloc[0] = np.nan
In [3]: df
Out[3]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar
The recommended way to do this type of assignment is:
In [4]: df = pd.DataFrame({"A": np.array(["foo", "bar", "bah", "foo", "bar"])})
In [5]: df.loc[0, "A"] = np.nan
In [6]: df
Out[6]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar
Output formatting enhancements¶
df.info() view now display dtype info per column (GH5682)
df.info() now honors the option
max_info_rows, to disable null counts for large frames (GH5974)In [7]: max_info_rows = pd.get_option("max_info_rows") In [8]: df = pd.DataFrame( ...: { ...: "A": np.random.randn(10), ...: "B": np.random.randn(10), ...: "C": pd.date_range("20130101", periods=10), ...: } ...: ) ...: In [9]: df.iloc[3:6, [0, 2]] = np.nan
# set to not display the null counts In [10]: pd.set_option("max_info_rows", 0) In [11]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 A float64 1 B float64 2 C datetime64[ns] dtypes: datetime64[ns](1), float64(2) memory usage: 368.0 bytes
# this is the default (same as in 0.13.0) In [12]: pd.set_option("max_info_rows", max_info_rows) In [13]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 A 7 non-null float64 1 B 10 non-null float64 2 C 7 non-null datetime64[ns] dtypes: datetime64[ns](1), float64(2) memory usage: 368.0 bytes
Add
show_dimensionsdisplay option for the new DataFrame repr to control whether the dimensions print.In [14]: df = pd.DataFrame([[1, 2], [3, 4]]) In [15]: pd.set_option("show_dimensions", False) In [16]: df Out[16]: 0 1 0 1 2 1 3 4 In [17]: pd.set_option("show_dimensions", True) In [18]: df Out[18]: 0 1 0 1 2 1 3 4 [2 rows x 2 columns]
The
ArrayFormatterfordatetimeandtimedelta64now intelligently limit precision based on the values in the array (GH3401)Previously output might look like:
age today diff 0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00 1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00
Now the output looks like:
In [19]: df = pd.DataFrame( ....: [pd.Timestamp("20010101"), pd.Timestamp("20040601")], columns=["age"] ....: ) ....: In [20]: df["today"] = pd.Timestamp("20130419") In [21]: df["diff"] = df["today"] - df["age"] In [22]: df Out[22]: age today diff 0 2001-01-01 2013-04-19 4491 days 1 2004-06-01 2013-04-19 3244 days [2 rows x 3 columns]
API changes¶
Add
-NaNand-nanto the default set of NA values (GH5952). See NA Values.Added
Series.str.get_dummiesvectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:In [23]: s = pd.Series(["a", "a|b", np.nan, "a|c"]) In [24]: s.str.get_dummies(sep="|") Out[24]: a b c 0 1 0 0 1 1 1 0 2 0 0 0 3 1 0 1 [4 rows x 3 columns]
Added the
NDFrame.equals()method to compare if two NDFrames are equal have equal axes, dtypes, and values. Added thearray_equivalentfunction to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also the docs for a motivating example.df = pd.DataFrame({"col": ["foo", 0, np.nan]}) df2 = pd.DataFrame({"col": [np.nan, 0, "foo"]}, index=[2, 1, 0]) df.equals(df2) df.equals(df2.sort_index())
DataFrame.applywill use thereduceargument to determine whether aSeriesor aDataFrameshould be returned when theDataFrameis empty (GH6007).Previously, calling
DataFrame.applyan emptyDataFramewould return either aDataFrameif there were no columns, or the function being applied would be called with an emptySeriesto guess whether aSeriesorDataFrameshould be returned:In [32]: def applied_func(col): ....: print("Apply function being called with: ", col) ....: return col.sum() ....: In [33]: empty = DataFrame(columns=['a', 'b']) In [34]: empty.apply(applied_func) Apply function being called with: Series([], Length: 0, dtype: float64) Out[34]: a NaN b NaN Length: 2, dtype: float64
Now, when
applyis called on an emptyDataFrame: if thereduceargument isTrueaSerieswill returned, if it isFalseaDataFramewill be returned, and if it isNone(the default) the function being applied will be called with an empty series to try and guess the return type.In [35]: empty.apply(applied_func, reduce=True) Out[35]: a NaN b NaN Length: 2, dtype: float64 In [36]: empty.apply(applied_func, reduce=False) Out[36]: Empty DataFrame Columns: [a, b] Index: [] [0 rows x 2 columns]
Prior version deprecations/changes¶
There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1
Deprecations¶
There are no deprecations of prior behavior in 0.13.1
Enhancements¶
pd.read_csvandpd.to_datetimelearned a newinfer_datetime_formatkeyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)If
parse_datesis enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.# Try to infer the format for the index column df = pd.read_csv( "foo.csv", index_col=0, parse_dates=True, infer_datetime_format=True )
date_formatanddatetime_formatkeywords can now be specified when writing toexcelfiles (GH4133)MultiIndex.from_productconvenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):In [25]: shades = ["light", "dark"] In [26]: colors = ["red", "green", "blue"] In [27]: pd.MultiIndex.from_product([shades, colors], names=["shade", "color"]) Out[27]: MultiIndex([('light', 'red'), ('light', 'green'), ('light', 'blue'), ( 'dark', 'red'), ( 'dark', 'green'), ( 'dark', 'blue')], names=['shade', 'color'])
Panel
apply()will work on non-ufuncs. See the docs.In [28]: import pandas._testing as tm In [29]: panel = tm.makePanel(5) In [30]: panel Out[30]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: A to D In [31]: panel['ItemA'] Out[31]: A B C D 2000-01-03 -0.673690 0.577046 -1.344312 -1.469388 2000-01-04 0.113648 -1.715002 0.844885 0.357021 2000-01-05 -1.478427 -1.039268 1.075770 -0.674600 2000-01-06 0.524988 -0.370647 -0.109050 -1.776904 2000-01-07 0.404705 -1.157892 1.643563 -0.968914 [5 rows x 4 columns]
Specifying an
applythat operates on a Series (to return a single element)In [32]: panel.apply(lambda x: x.dtype, axis='items') Out[32]: A B C D 2000-01-03 float64 float64 float64 float64 2000-01-04 float64 float64 float64 float64 2000-01-05 float64 float64 float64 float64 2000-01-06 float64 float64 float64 float64 2000-01-07 float64 float64 float64 float64 [5 rows x 4 columns]
A similar reduction type operation
In [33]: panel.apply(lambda x: x.sum(), axis='major_axis') Out[33]: ItemA ItemB ItemC A -1.108775 -1.090118 -2.984435 B -3.705764 0.409204 1.866240 C 2.110856 2.960500 -0.974967 D -4.532785 0.303202 -3.685193 [4 rows x 3 columns]
This is equivalent to
In [34]: panel.sum('major_axis') Out[34]: ItemA ItemB ItemC A -1.108775 -1.090118 -2.984435 B -3.705764 0.409204 1.866240 C 2.110856 2.960500 -0.974967 D -4.532785 0.303202 -3.685193 [4 rows x 3 columns]
A transformation operation that returns a Panel, but is computing the z-score across the major_axis
In [35]: result = panel.apply(lambda x: (x - x.mean()) / x.std(), ....: axis='major_axis') ....: In [36]: result Out[36]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: A to D In [37]: result['ItemA'] # noqa E999 Out[37]: A B C D 2000-01-03 -0.535778 1.500802 -1.506416 -0.681456 2000-01-04 0.397628 -1.108752 0.360481 1.529895 2000-01-05 -1.489811 -0.339412 0.557374 0.280845 2000-01-06 0.885279 0.421830 -0.453013 -1.053785 2000-01-07 0.742682 -0.474468 1.041575 -0.075499 [5 rows x 4 columns]
Panel
apply()operating on cross-sectional slabs. (GH1148)In [38]: def f(x): ....: return ((x.T - x.mean(1)) / x.std(1)).T ....: In [39]: result = panel.apply(f, axis=['items', 'major_axis']) In [40]: result Out[40]: <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis) Items axis: A to D Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: ItemA to ItemC In [41]: result.loc[:, :, 'ItemA'] Out[41]: A B C D 2000-01-03 0.012922 -0.030874 -0.629546 -0.757034 2000-01-04 0.392053 -1.071665 0.163228 0.548188 2000-01-05 -1.093650 -0.640898 0.385734 -1.154310 2000-01-06 1.005446 -1.154593 -0.595615 -0.809185 2000-01-07 0.783051 -0.198053 0.919339 -1.052721 [5 rows x 4 columns]
This is equivalent to the following
In [42]: result = pd.Panel({ax: f(panel.loc[:, :, ax]) for ax in panel.minor_axis}) In [43]: result Out[43]: <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis) Items axis: A to D Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: ItemA to ItemC In [44]: result.loc[:, :, 'ItemA'] Out[44]: A B C D 2000-01-03 0.012922 -0.030874 -0.629546 -0.757034 2000-01-04 0.392053 -1.071665 0.163228 0.548188 2000-01-05 -1.093650 -0.640898 0.385734 -1.154310 2000-01-06 1.005446 -1.154593 -0.595615 -0.809185 2000-01-07 0.783051 -0.198053 0.919339 -1.052721 [5 rows x 4 columns]
Performance¶
Performance improvements for 0.13.1
Series datetime/timedelta binary operations (GH5801)
DataFrame
count/dropnaforaxis=1Series.str.contains now has a
regex=Falsekeyword which can be faster for plain (non-regex) string patterns. (GH5879)Series.str.extract (GH5944)
dtypes/ftypesmethods (GH5968)indexing with object dtypes (GH5968)
DataFrame.apply(GH6013)Regression in JSON IO (GH5765)
Index construction from Series (GH6150)
Experimental¶
There are no experimental changes in 0.13.1
Bug fixes¶
Bug in
io.wb.get_countriesnot including all countries (GH6008)Bug in Series replace with timestamp dict (GH5797)
read_csv/read_table now respects the
prefixkwarg (GH5732).Bug in selection with missing values via
.ixfrom a duplicate indexed DataFrame failing (GH5835)Fix issue of boolean comparison on empty DataFrames (GH5808)
Bug in isnull handling
NaTin an object array (GH5443)Bug in
to_datetimewhen passed anp.nanor integer datelike and a format string (GH5863)Bug in groupby dtype conversion with datetimelike (GH5869)
Regression in handling of empty Series as indexers to Series (GH5877)
Bug in internal caching, related to (GH5727)
Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874)
Bug when assigning to .ix[tuple(…)] (GH5896)
Bug in fully reindexing a Panel (GH5905)
Bug in idxmin/max with object dtypes (GH5914)
Bug in
BusinessDaywhen adding n days to a date not on offset when n>5 and n%5==0 (GH5890)Bug in assigning to chained series with a series via ix (GH5928)
Bug in creating an empty DataFrame, copying, then assigning (GH5932)
Bug in DataFrame.tail with empty frame (GH5846)
Bug in propagating metadata on
resample(GH5862)Fixed string-representation of
NaTto be “NaT” (GH5708)Fixed string-representation for Timestamp to show nanoseconds if present (GH5912)
pd.matchnot returning passed sentinelPanel.to_frame()no longer fails whenmajor_axisis aMultiIndex(GH5402).Bug in
pd.read_msgpackwith inferring aDateTimeIndexfrequency incorrectly (GH5947)Fixed
to_datetimefor array with both Tz-aware datetimes andNaT’s (GH5961)Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)
Bug in scipy
interpolatemethods with a datetime index (GH5975)Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968)
Fixed bug with
pd.concatlosing dtype information if all inputs are empty (GH5742)Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).
Bug in merging
timedeltadtypes (GH5695)Bug in plotting.scatter_matrix function. Wrong alignment among diagonal and off-diagonal plots, see (GH5497).
Regression in Series with a MultiIndex via ix (GH6018)
Bug in Series.xs with a MultiIndex (GH6018)
Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6028)
Possible segfault when chained indexing with an object array under NumPy 1.7.1 (GH6026, GH6056)
Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)
Regression in
.get(None)indexing from 0.12 (GH5652)Subtle
ilocindexing bug, surfaced in (GH6059)Bug with insert of strings into DatetimeIndex (GH5818)
Fixed unicode bug in to_html/HTML repr (GH6098)
Fixed missing arg validation in get_options_data (GH6105)
Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120)
Bug in propagating _ref_locs during construction of a DataFrame with dups index/columns (GH6121)
Bug in
DataFrame.applywhen using mixed datelike reductions (GH6125)Bug in
DataFrame.appendwhen appending a row with different columns (GH6129)Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)
Bug in
.locsetitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)Fixed a bug in
query/evalduring lexicographic string comparisons (GH6155).Fixed a bug in
querywhere the index of a single-elementSerieswas being thrown away (GH6148).Bug in
HDFStoreon appending a dataframe with MultiIndexed columns to an existing table (GH6167)Consistency with dtypes in setting an empty DataFrame (GH6171)
Bug in selecting on a MultiIndex
HDFStoreeven in the presence of under specified column spec (GH6169)Bug in
nanops.varwithddof=1and 1 elements would sometimes returninfrather thannanon some platforms (GH6136)Bug in Series and DataFrame bar plots ignoring the
use_indexkeyword (GH6209)Bug in groupby with mixed str/int under python3 fixed;
argsortwas failing (GH6212)
Contributors¶
A total of 52 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Alex Rothberg
Alok Singhal +
Andrew Burrows +
Andy Hayden
Bjorn Arneson +
Brad Buran
Caleb Epstein
Chapman Siu
Chase Albert +
Clark Fitzgerald +
DSM
Dan Birken
Daniel Waeber +
David Wolever +
Doran Deluz +
Douglas McNeil +
Douglas Rudd +
Dražen Lučanin
Elliot S +
Felix Lawrence +
George Kuan +
Guillaume Gay +
Jacob Schaer
Jan Wagner +
Jeff Tratner
John McNamara
Joris Van den Bossche
Julia Evans +
Kieran O’Mahony
Michael Schatzow +
Naveen Michaud-Agrawal +
Patrick O’Keeffe +
Phillip Cloud
Roman Pekar
Skipper Seabold
Spencer Lyon
Tom Augspurger +
TomAugspurger
acorbe +
akittredge +
bmu +
bwignall +
chapman siu
danielballan
david +
davidshinn
immerrr +
jreback
lexual
mwaskom +
unutbu
y-p