pandas.DataFrame.expanding#
- DataFrame.expanding(min_periods=1, center=None, axis=0, method='single')[source]#
- Provide expanding window calculations. - Parameters
- min_periodsint, default 1
- Minimum number of observations in window required to have a value; otherwise, result is - np.nan.
- centerbool, default False
- If False, set the window labels as the right edge of the window index. - If True, set the window labels as the center of the window index. - Deprecated since version 1.1.0. 
- axisint or str, default 0
- If - 0or- 'index', roll across the rows.- If - 1or- 'columns', roll across the columns.- For Series this parameter is unused and defaults to 0. 
- methodstr {‘single’, ‘table’}, default ‘single’
- Execute the rolling operation per single column or row ( - 'single') or over the entire object (- 'table').- This argument is only implemented when specifying - engine='numba'in the method call.- New in version 1.3.0. 
 
- Returns
- Expandingsubclass
 
 - Notes - See Windowing Operations for further usage details and examples. - Examples - >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 - min_periods - Expanding sum with 1 vs 3 observations needed to calculate a value. - >>> df.expanding(1).sum() B 0 0.0 1 1.0 2 3.0 3 3.0 4 7.0 >>> df.expanding(3).sum() B 0 NaN 1 NaN 2 3.0 3 3.0 4 7.0