pandas.DataFrame.tz_localize#
- DataFrame.tz_localize(tz, axis=0, level=None, copy=True, ambiguous='raise', nonexistent='raise')[source]#
- Localize tz-naive index of a Series or DataFrame to target time zone. - This operation localizes the Index. To localize the values in a timezone-naive Series, use - Series.dt.tz_localize().- Parameters
- tzstr or tzinfo
- axisthe axis to localize
- levelint, str, default None
- If axis ia a MultiIndex, localize a specific level. Otherwise must be None. 
- copybool, default True
- Also make a copy of the underlying data. 
- ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
- When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled. - ‘infer’ will attempt to infer fall dst-transition hours based on order 
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) 
- ‘NaT’ will return NaT where there are ambiguous times 
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. 
 
- nonexistentstr, default ‘raise’
- A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are: - ‘shift_forward’ will shift the nonexistent time forward to the closest existing time 
- ‘shift_backward’ will shift the nonexistent time backward to the closest existing time 
- ‘NaT’ will return NaT where there are nonexistent times 
- timedelta objects will shift nonexistent times by the timedelta 
- ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. 
 
 
- Returns
- Series/DataFrame
- Same type as the input. 
 
- Raises
- TypeError
- If the TimeSeries is tz-aware and tz is not None. 
 
 - Examples - Localize local times: - >>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64 - Be careful with DST changes. When there is sequential data, pandas can infer the DST time: - >>> s = pd.Series(range(7), ... index=pd.DatetimeIndex(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 - In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly - >>> s = pd.Series(range(3), ... index=pd.DatetimeIndex(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64 - If the DST transition causes nonexistent times, you can shift these dates forward or backward with a timedelta object or ‘shift_forward’ or ‘shift_backward’. - >>> s = pd.Series(range(2), ... index=pd.DatetimeIndex(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64