pandas.DataFrame.rename#
- DataFrame.rename(mapper=None, *, index=None, columns=None, axis=None, copy=None, inplace=False, level=None, errors='ignore')[source]#
- Alter axes labels. - Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. - See the user guide for more. - Parameters
- mapperdict-like or function
- Dict-like or function transformations to apply to that axis’ values. Use either - mapperand- axisto specify the axis to target with- mapper, or- indexand- columns.
- indexdict-like or function
- Alternative to specifying axis ( - mapper, axis=0is equivalent to- index=mapper).
- columnsdict-like or function
- Alternative to specifying axis ( - mapper, axis=1is equivalent to- columns=mapper).
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- Axis to target with - mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.
- copybool, default True
- Also copy underlying data. 
- inplacebool, default False
- Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored. 
- levelint or level name, default None
- In case of a MultiIndex, only rename labels in the specified level. 
- errors{‘ignore’, ‘raise’}, default ‘ignore’
- If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. 
 
- Returns
- DataFrame or None
- DataFrame with the renamed axis labels or None if - inplace=True.
 
- Raises
- KeyError
- If any of the labels is not found in the selected axis and “errors=’raise’”. 
 
 - See also - DataFrame.rename_axis
- Set the name of the axis. 
 - Examples - DataFrame.renamesupports two calling conventions- (index=index_mapper, columns=columns_mapper, ...)
- (mapper, axis={'index', 'columns'}, ...)
 - We highly recommend using keyword arguments to clarify your intent. - Rename columns using a mapping: - >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 - Rename index using a mapping: - >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 - Cast index labels to a different type: - >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') - >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis - Using axis-style parameters: - >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 - >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6