pandas.DataFrame.min#
- DataFrame.min(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]#
- Return the minimum of the values over the requested axis. - If you want the index of the minimum, use - idxmin. This is the equivalent of the- numpy.ndarraymethod- argmin.- Parameters
- axis{index (0), columns (1)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- levelint or level name, default None
- If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. - Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. 
- numeric_onlybool, default None
- Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. - Deprecated since version 1.5.0: Specifying - numeric_only=Noneis deprecated. The default value will be- Falsein a future version of pandas.
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns
- Series or DataFrame (if level specified)
 
 - See also - Series.sum
- Return the sum. 
- Series.min
- Return the minimum. 
- Series.max
- Return the maximum. 
- Series.idxmin
- Return the index of the minimum. 
- Series.idxmax
- Return the index of the maximum. 
- DataFrame.sum
- Return the sum over the requested axis. 
- DataFrame.min
- Return the minimum over the requested axis. 
- DataFrame.max
- Return the maximum over the requested axis. 
- DataFrame.idxmin
- Return the index of the minimum over the requested axis. 
- DataFrame.idxmax
- Return the index of the maximum over the requested axis. 
 - Examples - >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 - >>> s.min() 0