pandas.core.window.ewm.ExponentialMovingWindow.cov#
- ExponentialMovingWindow.cov(other=None, pairwise=None, bias=False, numeric_only=False, **kwargs)[source]#
- Calculate the ewm (exponential weighted moment) sample covariance. - Parameters
- otherSeries or DataFrame , optional
- If not supplied then will default to self and produce pairwise output. 
- pairwisebool, default None
- If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- biasbool, default False
- Use a standard estimation bias correction. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. - New in version 1.5.0. 
- **kwargs
- For NumPy compatibility and will not have an effect on the result. - Deprecated since version 1.5.0. 
 
- Returns
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.ewm
- Calling ewm with Series data. 
- pandas.DataFrame.ewm
- Calling ewm with DataFrames. 
- pandas.Series.cov
- Aggregating cov for Series. 
- pandas.DataFrame.cov
- Aggregating cov for DataFrame.