pandas.core.window.expanding.Expanding.kurt#
- Expanding.kurt(numeric_only=False, **kwargs)[source]#
- Calculate the expanding Fisher’s definition of kurtosis without bias. - Parameters
- numeric_onlybool, default False
- Include only float, int, boolean columns. - New in version 1.5.0. 
- **kwargs
- For NumPy compatibility and will not have an effect on the result. - Deprecated since version 1.5.0. 
 
- Returns
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - scipy.stats.kurtosis
- Reference SciPy method. 
- pandas.Series.expanding
- Calling expanding with Series data. 
- pandas.DataFrame.expanding
- Calling expanding with DataFrames. 
- pandas.Series.kurt
- Aggregating kurt for Series. 
- pandas.DataFrame.kurt
- Aggregating kurt for DataFrame. 
 - Notes - A minimum of four periods is required for the calculation. - Examples - The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats. - >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr, bias=False):.6f}") 4.999874 >>> s = pd.Series(arr) >>> s.expanding(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 4.999874 dtype: float64