pandas.core.window.rolling.Rolling.aggregate#
- Rolling.aggregate(func, *args, **kwargs)[source]#
- Aggregate using one or more operations over the specified axis. - Parameters
- funcfunction, str, list or dict
- Function to use for aggregating the data. If a function, must either work when passed a Series/Dataframe or when passed to Series/Dataframe.apply. - Accepted combinations are: - function 
- string function name 
- list of functions and/or function names, e.g. - [np.sum, 'mean']
- dict of axis labels -> functions, function names or list of such. 
 
- *args
- Positional arguments to pass to func. 
- **kwargs
- Keyword arguments to pass to func. 
 
- Returns
- scalar, Series or DataFrame
- The return can be: - scalar : when Series.agg is called with single function 
- Series : when DataFrame.agg is called with a single function 
- DataFrame : when DataFrame.agg is called with several functions 
 - Return scalar, Series or DataFrame. 
 
 - See also - pandas.Series.rolling
- Calling object with Series data. 
- pandas.DataFrame.rolling
- Calling object with DataFrame data. 
 - Notes - agg is an alias for aggregate. Use the alias. - Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. - A passed user-defined-function will be passed a Series for evaluation. - Examples - >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) >>> df A B C 0 1 4 7 1 2 5 8 2 3 6 9 - >>> df.rolling(2).sum() A B C 0 NaN NaN NaN 1 3.0 9.0 15.0 2 5.0 11.0 17.0 - >>> df.rolling(2).agg({"A": "sum", "B": "min"}) A B 0 NaN NaN 1 3.0 4.0 2 5.0 5.0