pandas.core.window.rolling.Rolling.sum#
- Rolling.sum(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]#
- Calculate the rolling sum. - Parameters
- numeric_onlybool, default False
- Include only float, int, boolean columns. - New in version 1.5.0. 
- *args
- For NumPy compatibility and will not have an effect on the result. - Deprecated since version 1.5.0. 
- enginestr, default None
- 'cython': Runs the operation through C-extensions from cython.
- 'numba': Runs the operation through JIT compiled code from numba.
- None: Defaults to- 'cython'or globally setting- compute.use_numba- New in version 1.3.0. 
 
- engine_kwargsdict, default None
- For - 'cython'engine, there are no accepted- engine_kwargs
- For - 'numba'engine, the engine can accept- nopython,- nogiland- paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {'nopython': True, 'nogil': False, 'parallel': False}- New in version 1.3.0. 
 
- **kwargs
- For NumPy compatibility and will not have an effect on the result. - Deprecated since version 1.5.0. 
 
- Returns
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.rolling
- Calling rolling with Series data. 
- pandas.DataFrame.rolling
- Calling rolling with DataFrames. 
- pandas.Series.sum
- Aggregating sum for Series. 
- pandas.DataFrame.sum
- Aggregating sum for DataFrame. 
 - Notes - See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine. - Examples - >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 - >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 - >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 - For DataFrame, each sum is computed column-wise. - >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 - >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0