pandas.Series.from_csv¶
- 
classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)[source]¶
- Read CSV file (DISCOURAGED, please use - pandas.read_csv()instead).- It is preferable to use the more powerful - pandas.read_csv()for most general purposes, but- from_csvmakes for an easy roundtrip to and from a file (the exact counterpart of- to_csv), especially with a time Series.- This method only differs from - pandas.read_csv()in some defaults:- index_col is 0instead ofNone(take first column as index by default)
- header is Noneinstead of0(the first row is not used as the column names)
- parse_dates is Trueinstead ofFalse(try parsing the index as datetime by default)
 - With - pandas.read_csv(), the option- squeeze=Truecan be used to return a Series like- from_csv.- Parameters: - path : string file path or file handle / StringIO - sep : string, default ‘,’ - Field delimiter - parse_dates : boolean, default True - Parse dates. Different default from read_table - header : int, default None - Row to use as header (skip prior rows) - index_col : int or sequence, default 0 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table - encoding : string, optional - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 - infer_datetime_format: boolean, default False - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. - Returns: - y : Series - See also 
- index_col is