pandas.Series¶
- 
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)[source]¶
- One-dimensional ndarray with axis labels (including time series). - Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). - Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. - Parameters: - data : array-like, dict, or scalar value - Contains data stored in Series - index : array-like or Index (1d) - Values must be hashable and have the same length as data. Non-unique index values are allowed. Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. - dtype : numpy.dtype or None - If None, dtype will be inferred - copy : boolean, default False - Copy input data - Attributes - T- return the transpose, which is by definition self - asobject- return object Series which contains boxed values - at- Fast label-based scalar accessor - axes- Return a list of the row axis labels - base- return the base object if the memory of the underlying data is - blocks- Internal property, property synonym for as_blocks() - data- return the data pointer of the underlying data - dtype- return the dtype object of the underlying data - dtypes- return the dtype object of the underlying data - empty- flags- ftype- return if the data is sparse|dense - ftypes- return if the data is sparse|dense - hasnans- iat- Fast integer location scalar accessor. - iloc- Purely integer-location based indexing for selection by position. - imag- is_copy- is_monotonic- Return boolean if values in the object are - is_monotonic_decreasing- Return boolean if values in the object are - is_monotonic_increasing- Return boolean if values in the object are - is_unique- Return boolean if values in the object are unique - itemsize- return the size of the dtype of the item of the underlying data - ix- A primarily label-location based indexer, with integer position fallback. - loc- Purely label-location based indexer for selection by label. - name- nbytes- return the number of bytes in the underlying data - ndim- return the number of dimensions of the underlying data, - real- shape- return a tuple of the shape of the underlying data - size- return the number of elements in the underlying data - strides- return the strides of the underlying data - values- Return Series as ndarray or ndarray-like - Methods - abs()- Return an object with absolute value taken–only applicable to objects that are all numeric. - add(other[, level, fill_value, axis])- Addition of series and other, element-wise (binary operator add). - add_prefix(prefix)- Concatenate prefix string with panel items names. - add_suffix(suffix)- Concatenate suffix string with panel items names. - agg(func[, axis])- Aggregate using callable, string, dict, or list of string/callables - aggregate(func[, axis])- Aggregate using callable, string, dict, or list of string/callables - align(other[, join, axis, level, copy, ...])- Align two object on their axes with the - all([axis, bool_only, skipna, level])- Return whether all elements are True over requested axis - any([axis, bool_only, skipna, level])- Return whether any element is True over requested axis - append(to_append[, ignore_index, ...])- Concatenate two or more Series. - apply(func[, convert_dtype, args])- Invoke function on values of Series. - argmax([axis, skipna])- Index of first occurrence of maximum of values. - argmin([axis, skipna])- Index of first occurrence of minimum of values. - argsort([axis, kind, order])- Overrides ndarray.argsort. - as_blocks([copy])- Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. - as_matrix([columns])- Convert the frame to its Numpy-array representation. - asfreq(freq[, method, how, normalize, ...])- Convert TimeSeries to specified frequency. - asof(where[, subset])- The last row without any NaN is taken (or the last row without - astype(dtype[, copy, errors])- Cast object to input numpy.dtype - at_time(time[, asof])- Select values at particular time of day (e.g. - autocorr([lag])- Lag-N autocorrelation - between(left, right[, inclusive])- Return boolean Series equivalent to left <= series <= right. - between_time(start_time, end_time[, ...])- Select values between particular times of the day (e.g., 9:00-9:30 AM). - bfill([axis, inplace, limit, downcast])- Synonym for - DataFrame.fillna(method='bfill')- bool()- Return the bool of a single element PandasObject. - cat- alias of - CategoricalAccessor- clip([lower, upper, axis])- Trim values at input threshold(s). - clip_lower(threshold[, axis])- Return copy of the input with values below given value(s) truncated. - clip_upper(threshold[, axis])- Return copy of input with values above given value(s) truncated. - combine(other, func[, fill_value])- Perform elementwise binary operation on two Series using given function - combine_first(other)- Combine Series values, choosing the calling Series’s values first. - compound([axis, skipna, level])- Return the compound percentage of the values for the requested axis - compress(condition, *args, **kwargs)- Return selected slices of an array along given axis as a Series - consolidate([inplace])- DEPRECATED: consolidate will be an internal implementation only. - convert_objects([convert_dates, ...])- Deprecated. - copy([deep])- Make a copy of this objects data. - corr(other[, method, min_periods])- Compute correlation with other Series, excluding missing values - count([level])- Return number of non-NA/null observations in the Series - cov(other[, min_periods])- Compute covariance with Series, excluding missing values - cummax([axis, skipna])- Return cumulative max over requested axis. - cummin([axis, skipna])- Return cumulative minimum over requested axis. - cumprod([axis, skipna])- Return cumulative product over requested axis. - cumsum([axis, skipna])- Return cumulative sum over requested axis. - describe([percentiles, include, exclude])- Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding - NaNvalues.- diff([periods])- 1st discrete difference of object - div(other[, level, fill_value, axis])- Floating division of series and other, element-wise (binary operator truediv). - divide(other[, level, fill_value, axis])- Floating division of series and other, element-wise (binary operator truediv). - dot(other)- Matrix multiplication with DataFrame or inner-product with Series - drop(labels[, axis, level, inplace, errors])- Return new object with labels in requested axis removed. - drop_duplicates([keep, inplace])- Return Series with duplicate values removed - dropna([axis, inplace])- Return Series without null values - dt- alias of - CombinedDatetimelikeProperties- duplicated([keep])- Return boolean Series denoting duplicate values - eq(other[, level, fill_value, axis])- Equal to of series and other, element-wise (binary operator eq). - equals(other)- Determines if two NDFrame objects contain the same elements. - ewm([com, span, halflife, alpha, ...])- Provides exponential weighted functions - expanding([min_periods, freq, center, axis])- Provides expanding transformations. - factorize([sort, na_sentinel])- Encode the object as an enumerated type or categorical variable - ffill([axis, inplace, limit, downcast])- Synonym for - DataFrame.fillna(method='ffill')- fillna([value, method, axis, inplace, ...])- Fill NA/NaN values using the specified method - filter([items, like, regex, axis])- Subset rows or columns of dataframe according to labels in the specified index. - first(offset)- Convenience method for subsetting initial periods of time series data based on a date offset. - first_valid_index()- Return label for first non-NA/null value - floordiv(other[, level, fill_value, axis])- Integer division of series and other, element-wise (binary operator floordiv). - from_array(arr[, index, name, dtype, copy, ...])- from_csv(path[, sep, parse_dates, header, ...])- Read CSV file (DISCOURAGED, please use - pandas.read_csv()instead).- ge(other[, level, fill_value, axis])- Greater than or equal to of series and other, element-wise (binary operator ge). - get(key[, default])- Get item from object for given key (DataFrame column, Panel slice, etc.). - get_dtype_counts()- Return the counts of dtypes in this object. - get_ftype_counts()- Return the counts of ftypes in this object. - get_value(label[, takeable])- Quickly retrieve single value at passed index label - get_values()- same as values (but handles sparseness conversions); is a view - groupby([by, axis, level, as_index, sort, ...])- Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. - gt(other[, level, fill_value, axis])- Greater than of series and other, element-wise (binary operator gt). - head([n])- Returns first n rows - hist([by, ax, grid, xlabelsize, xrot, ...])- Draw histogram of the input series using matplotlib - idxmax([axis, skipna])- Index of first occurrence of maximum of values. - idxmin([axis, skipna])- Index of first occurrence of minimum of values. - interpolate([method, axis, limit, inplace, ...])- Interpolate values according to different methods. - isin(values)- Return a boolean - Seriesshowing whether each element in the- Seriesis exactly contained in the passed sequence of- values.- isnull()- Return a boolean same-sized object indicating if the values are null. - item()- return the first element of the underlying data as a python - items()- Lazily iterate over (index, value) tuples - iteritems()- Lazily iterate over (index, value) tuples - keys()- Alias for index - kurt([axis, skipna, level, numeric_only])- Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). - kurtosis([axis, skipna, level, numeric_only])- Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). - last(offset)- Convenience method for subsetting final periods of time series data based on a date offset. - last_valid_index()- Return label for last non-NA/null value - le(other[, level, fill_value, axis])- Less than or equal to of series and other, element-wise (binary operator le). - lt(other[, level, fill_value, axis])- Less than of series and other, element-wise (binary operator lt). - mad([axis, skipna, level])- Return the mean absolute deviation of the values for the requested axis - map(arg[, na_action])- Map values of Series using input correspondence (which can be - mask(cond[, other, inplace, axis, level, ...])- Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. - max([axis, skipna, level, numeric_only])- This method returns the maximum of the values in the object. - mean([axis, skipna, level, numeric_only])- Return the mean of the values for the requested axis - median([axis, skipna, level, numeric_only])- Return the median of the values for the requested axis - memory_usage([index, deep])- Memory usage of the Series - min([axis, skipna, level, numeric_only])- This method returns the minimum of the values in the object. - mod(other[, level, fill_value, axis])- Modulo of series and other, element-wise (binary operator mod). - mode()- Return the mode(s) of the dataset. - mul(other[, level, fill_value, axis])- Multiplication of series and other, element-wise (binary operator mul). - multiply(other[, level, fill_value, axis])- Multiplication of series and other, element-wise (binary operator mul). - ne(other[, level, fill_value, axis])- Not equal to of series and other, element-wise (binary operator ne). - nlargest([n, keep])- Return the largest n elements. - nonzero()- Return the indices of the elements that are non-zero - notnull()- Return a boolean same-sized object indicating if the values are not null. - nsmallest([n, keep])- Return the smallest n elements. - nunique([dropna])- Return number of unique elements in the object. - pct_change([periods, fill_method, limit, freq])- Percent change over given number of periods. - pipe(func, *args, **kwargs)- Apply func(self, *args, **kwargs) - plot- alias of - SeriesPlotMethods- pop(item)- Return item and drop from frame. - pow(other[, level, fill_value, axis])- Exponential power of series and other, element-wise (binary operator pow). - prod([axis, skipna, level, numeric_only])- Return the product of the values for the requested axis - product([axis, skipna, level, numeric_only])- Return the product of the values for the requested axis - ptp([axis, skipna, level, numeric_only])- Returns the difference between the maximum value and the minimum value in the object. - put(*args, **kwargs)- Applies the put method to its values attribute if it has one. - quantile([q, interpolation])- Return value at the given quantile, a la numpy.percentile. - radd(other[, level, fill_value, axis])- Addition of series and other, element-wise (binary operator radd). - rank([axis, method, numeric_only, ...])- Compute numerical data ranks (1 through n) along axis. - ravel([order])- Return the flattened underlying data as an ndarray - rdiv(other[, level, fill_value, axis])- Floating division of series and other, element-wise (binary operator rtruediv). - reindex([index])- Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. - reindex_axis(labels[, axis])- for compatibility with higher dims - reindex_like(other[, method, copy, limit, ...])- Return an object with matching indices to myself. - rename([index])- Alter axes input function or functions. - rename_axis(mapper[, axis, copy, inplace])- Alter index and / or columns using input function or functions. - reorder_levels(order)- Rearrange index levels using input order. - repeat(repeats, *args, **kwargs)- Repeat elements of an Series. - replace([to_replace, value, inplace, limit, ...])- Replace values given in ‘to_replace’ with ‘value’. - resample(rule[, how, axis, fill_method, ...])- Convenience method for frequency conversion and resampling of time series. - reset_index([level, drop, name, inplace])- Analogous to the - pandas.DataFrame.reset_index()function, see docstring there.- reshape(*args, **kwargs)- DEPRECATED: calling this method will raise an error in a future release. - rfloordiv(other[, level, fill_value, axis])- Integer division of series and other, element-wise (binary operator rfloordiv). - rmod(other[, level, fill_value, axis])- Modulo of series and other, element-wise (binary operator rmod). - rmul(other[, level, fill_value, axis])- Multiplication of series and other, element-wise (binary operator rmul). - rolling(window[, min_periods, freq, center, ...])- Provides rolling window calculcations. - round([decimals])- Round each value in a Series to the given number of decimals. - rpow(other[, level, fill_value, axis])- Exponential power of series and other, element-wise (binary operator rpow). - rsub(other[, level, fill_value, axis])- Subtraction of series and other, element-wise (binary operator rsub). - rtruediv(other[, level, fill_value, axis])- Floating division of series and other, element-wise (binary operator rtruediv). - sample([n, frac, replace, weights, ...])- Returns a random sample of items from an axis of object. - searchsorted(value[, side, sorter])- Find indices where elements should be inserted to maintain order. - select(crit[, axis])- Return data corresponding to axis labels matching criteria - sem([axis, skipna, level, ddof, numeric_only])- Return unbiased standard error of the mean over requested axis. - set_axis(axis, labels)- public verson of axis assignment - set_value(label, value[, takeable])- Quickly set single value at passed label. - shift([periods, freq, axis])- Shift index by desired number of periods with an optional time freq - skew([axis, skipna, level, numeric_only])- Return unbiased skew over requested axis - slice_shift([periods, axis])- Equivalent to shift without copying data. - sort_index([axis, level, ascending, ...])- Sort object by labels (along an axis) - sort_values([axis, ascending, inplace, ...])- Sort by the values along either axis - sortlevel([level, ascending, sort_remaining])- DEPRECATED: use - Series.sort_index()- squeeze([axis])- Squeeze length 1 dimensions. - std([axis, skipna, level, ddof, numeric_only])- Return sample standard deviation over requested axis. - str- alias of - StringMethods- sub(other[, level, fill_value, axis])- Subtraction of series and other, element-wise (binary operator sub). - subtract(other[, level, fill_value, axis])- Subtraction of series and other, element-wise (binary operator sub). - sum([axis, skipna, level, numeric_only])- Return the sum of the values for the requested axis - swapaxes(axis1, axis2[, copy])- Interchange axes and swap values axes appropriately - swaplevel([i, j, copy])- Swap levels i and j in a MultiIndex - tail([n])- Returns last n rows - take(indices[, axis, convert, is_copy])- return Series corresponding to requested indices - to_clipboard([excel, sep])- Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. - to_csv([path, index, sep, na_rep, ...])- Write Series to a comma-separated values (csv) file - to_dense()- Return dense representation of NDFrame (as opposed to sparse) - to_dict()- Convert Series to {label -> value} dict - to_excel(excel_writer[, sheet_name, na_rep, ...])- Write Series to an excel sheet - to_frame([name])- Convert Series to DataFrame - to_hdf(path_or_buf, key, **kwargs)- Write the contained data to an HDF5 file using HDFStore. - to_json([path_or_buf, orient, date_format, ...])- Convert the object to a JSON string. - to_latex([buf, columns, col_space, header, ...])- Render an object to a tabular environment table. - to_msgpack([path_or_buf, encoding])- msgpack (serialize) object to input file path - to_period([freq, copy])- Convert Series from DatetimeIndex to PeriodIndex with desired - to_pickle(path[, compression])- Pickle (serialize) object to input file path. - to_sparse([kind, fill_value])- Convert Series to SparseSeries - to_sql(name, con[, flavor, schema, ...])- Write records stored in a DataFrame to a SQL database. - to_string([buf, na_rep, float_format, ...])- Render a string representation of the Series - to_timestamp([freq, how, copy])- Cast to datetimeindex of timestamps, at beginning of period - to_xarray()- Return an xarray object from the pandas object. - tolist()- Convert Series to a nested list - transform(func, *args, **kwargs)- Call function producing a like-indexed NDFrame - transpose(*args, **kwargs)- return the transpose, which is by definition self - truediv(other[, level, fill_value, axis])- Floating division of series and other, element-wise (binary operator truediv). - truncate([before, after, axis, copy])- Truncates a sorted NDFrame before and/or after some particular index value. - tshift([periods, freq, axis])- Shift the time index, using the index’s frequency if available. - tz_convert(tz[, axis, level, copy])- Convert tz-aware axis to target time zone. - tz_localize(tz[, axis, level, copy, ambiguous])- Localize tz-naive TimeSeries to target time zone. - unique()- Return unique values in the object. - unstack([level, fill_value])- Unstack, a.k.a. - update(other)- Modify Series in place using non-NA values from passed Series. - valid([inplace])- value_counts([normalize, sort, ascending, ...])- Returns object containing counts of unique values. - var([axis, skipna, level, ddof, numeric_only])- Return unbiased variance over requested axis. - view([dtype])- where(cond[, other, inplace, axis, level, ...])- Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. - xs(key[, axis, level, drop_level])- Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.