pandas.core.groupby.DataFrameGroupBy.cummax#

DataFrameGroupBy.cummax(numeric_only=False, **kwargs)[source]#

Cumulative max for each group.

Parameters:
numeric_onlybool, default False

Include only float, int or boolean data.

**kwargsdict, optional

Additional keyword arguments to be passed to the function, such as skipna, to control whether NA/null values are ignored.

Returns:
Series or DataFrame

Cumulative max for each group. Same object type as the caller.

See also

Series.groupby

Apply a function groupby to a Series.

DataFrame.groupby

Apply a function groupby to each row or column of a DataFrame.

Examples

For SeriesGroupBy:

>>> lst = ["a", "a", "a", "b", "b", "b"]
>>> ser = pd.Series([1, 6, 2, 3, 1, 4], index=lst)
>>> ser
a    1
a    6
a    2
b    3
b    1
b    4
dtype: int64
>>> ser.groupby(level=0).cummax()
a    1
a    6
a    6
b    3
b    3
b    4
dtype: int64

For DataFrameGroupBy:

>>> data = [[1, 8, 2], [1, 1, 0], [2, 6, 9]]
>>> df = pd.DataFrame(
...     data, columns=["a", "b", "c"], index=["cow", "horse", "bull"]
... )
>>> df
        a   b   c
cow     1   8   2
horse   1   1   0
bull    2   6   9
>>> df.groupby("a").groups
{1: ['cow', 'horse'], 2: ['bull']}
>>> df.groupby("a").cummax()
        b   c
cow     8   2
horse   8   2
bull    6   9