pandas.core.groupby.SeriesGroupBy.skew#
- SeriesGroupBy.skew(skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased skew within groups.
Normalized by N-1.
- Parameters:
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- Series
Unbiased skew within groups.
See also
Series.skew
Return unbiased skew over requested axis.
Examples
>>> ser = pd.Series( ... [390.0, 350.0, 357.0, np.nan, 22.0, 20.0, 30.0], ... index=[ ... "Falcon", ... "Falcon", ... "Falcon", ... "Falcon", ... "Parrot", ... "Parrot", ... "Parrot", ... ], ... name="Max Speed", ... ) >>> ser Falcon 390.0 Falcon 350.0 Falcon 357.0 Falcon NaN Parrot 22.0 Parrot 20.0 Parrot 30.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).skew() Falcon 1.525174 Parrot 1.457863 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).skew(skipna=False) Falcon NaN Parrot 1.457863 Name: Max Speed, dtype: float64