pandas.core.groupby.DataFrameGroupBy.nth#
- property DataFrameGroupBy.nth[source]#
Take the nth row from each group if n is an int, otherwise a subset of rows.
Can be either a call or an index. dropna is not available with index notation. Index notation accepts a comma separated list of integers and slices.
If dropna, will take the nth non-null row, dropna is either ‘all’ or ‘any’; this is equivalent to calling dropna(how=dropna) before the groupby.
- Returns:
- Series or DataFrame
N-th value within each group.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
>>> df = pd.DataFrame( ... {"A": [1, 1, 2, 1, 2], "B": [np.nan, 2, 3, 4, 5]}, columns=["A", "B"] ... ) >>> g = df.groupby("A") >>> g.nth(0) A B 0 1 NaN 2 2 3.0 >>> g.nth(1) A B 1 1 2.0 4 2 5.0 >>> g.nth(-1) A B 3 1 4.0 4 2 5.0 >>> g.nth([0, 1]) A B 0 1 NaN 1 1 2.0 2 2 3.0 4 2 5.0 >>> g.nth(slice(None, -1)) A B 0 1 NaN 1 1 2.0 2 2 3.0
Index notation may also be used
>>> g.nth[0, 1] A B 0 1 NaN 1 1 2.0 2 2 3.0 4 2 5.0 >>> g.nth[:-1] A B 0 1 NaN 1 1 2.0 2 2 3.0
Specifying dropna allows ignoring
NaN
values>>> g.nth(0, dropna="any") A B 1 1 2.0 2 2 3.0
When the specified
n
is larger than any of the groups, an empty DataFrame is returned>>> g.nth(3, dropna="any") Empty DataFrame Columns: [A, B] Index: []