pandas.core.groupby.DataFrameGroupBy.get_group#
- DataFrameGroupBy.get_group(name)[source]#
Construct DataFrame from group with provided name.
- Parameters:
- nameobject
The name of the group to get as a DataFrame.
- Returns:
- Series or DataFrame
Get the respective Series or DataFrame corresponding to the group provided.
See also
DataFrameGroupBy.groups
Dictionary representation of the groupings formed during a groupby operation.
DataFrameGroupBy.indices
Provides a mapping of group rows to positions of the elements.
SeriesGroupBy.groups
Dictionary representation of the groupings formed during a groupby operation.
SeriesGroupBy.indices
Provides a mapping of group rows to positions of the elements.
Examples
For SeriesGroupBy:
>>> lst = ["a", "a", "b"] >>> ser = pd.Series([1, 2, 3], index=lst) >>> ser a 1 a 2 b 3 dtype: int64 >>> ser.groupby(level=0).get_group("a") a 1 a 2 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] >>> df = pd.DataFrame( ... data, columns=["a", "b", "c"], index=["owl", "toucan", "eagle"] ... ) >>> df a b c owl 1 2 3 toucan 1 5 6 eagle 7 8 9 >>> df.groupby(by=["a"]).get_group((1,)) a b c owl 1 2 3 toucan 1 5 6
For Resampler:
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> ser.resample("MS").get_group("2023-01-01") 2023-01-01 1 2023-01-15 2 dtype: int64