pandas.DataFrame.to_stata

DataFrame.to_stata(path, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, compression='infer', storage_options=None)[source]

Export DataFrame object to Stata dta format.

Writes the DataFrame to a Stata dataset file. “dta” files contain a Stata dataset.

Parameters
pathstr, buffer or path object

String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written.

Changed in version 1.0.0.

Previously this was “fname”

convert_datesdict

Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information.

write_indexbool

Write the index to Stata dataset.

byteorderstr

Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.

time_stampdatetime

A datetime to use as file creation date. Default is the current time.

data_labelstr, optional

A label for the data set. Must be 80 characters or smaller.

variable_labelsdict

Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.

version{114, 117, 118, 119, None}, default 114

Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables.

Changed in version 1.0.0: Added support for formats 118 and 119.

convert_strllist, optional

List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated.

compressionstr or dict, default ‘infer’

For on-the-fly compression of the output dta. If string, specifies compression mode. If dict, value at key ‘method’ specifies compression mode. Compression mode must be one of {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}. If compression mode is ‘infer’ and fname is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’ (otherwise no compression). If dict and compression mode is one of {‘zip’, ‘gzip’, ‘bz2’}, or inferred as one of the above, other entries passed as additional compression options.

New in version 1.1.0.

storage_optionsdict, optional

Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by fsspec, e.g., starting “s3://”, “gcs://”. An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values.

New in version 1.2.0.

Raises
NotImplementedError
  • If datetimes contain timezone information

  • Column dtype is not representable in Stata

ValueError
  • Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime

  • Column listed in convert_dates is not in DataFrame

  • Categorical label contains more than 32,000 characters

See also

read_stata

Import Stata data files.

io.stata.StataWriter

Low-level writer for Stata data files.

io.stata.StataWriter117

Low-level writer for version 117 files.

Examples

>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
...                               'parrot'],
...                    'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta')