pandas.HDFStore.select#
- HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False)[source]#
- Retrieve pandas object stored in file, optionally based on where criteria. - Warning - Pandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle when using the “fixed” format. Loading pickled data received from untrusted sources can be unsafe. - See: https://docs.python.org/3/library/pickle.html for more. - Parameters:
- keystr
- Object being retrieved from file. 
- wherelist or None
- List of Term (or convertible) objects, optional. 
- startint or None
- Row number to start selection. 
- stopint, default None
- Row number to stop selection. 
- columnslist or None
- A list of columns that if not None, will limit the return columns. 
- iteratorbool or False
- Returns an iterator. 
- chunksizeint or None
- Number or rows to include in iteration, return an iterator. 
- auto_closebool or False
- Should automatically close the store when finished. 
 
- Returns:
- object
- Retrieved object from file. 
 
 - See also - HDFStore.select_as_coordinates
- Returns the selection as an index. 
- HDFStore.select_column
- Returns a single column from the table. 
- HDFStore.select_as_multiple
- Retrieves pandas objects from multiple tables. 
 - Examples - >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) >>> store = pd.HDFStore("store.h5", "w") >>> store.put("data", df) >>> store.get("data") >>> print(store.keys()) ['/data1', '/data2'] >>> store.select("/data1") A B 0 1 2 1 3 4 >>> store.select("/data1", where="columns == A") A 0 1 1 3 >>> store.close()