pandas.HDFStore.append#
- HDFStore.append(key, value, format=None, axes=None, index=True, append=True, complib=None, complevel=None, columns=None, min_itemsize=None, nan_rep=None, chunksize=None, expectedrows=None, dropna=None, data_columns=None, encoding=None, errors='strict')[source]#
Append to Table in file.
Node must already exist and be Table format.
- Parameters:
- keystr
Key of object to append.
- value{Series, DataFrame}
Value of object to append.
- format‘table’ is the default
Format to use when storing object in HDFStore. Value can be one of:
'table'
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.
- axesdefault None
This parameter is currently not accepted.
- indexbool, default True
Write DataFrame index as a column.
- appendbool, default True
Append the input data to the existing.
- complibdefault None
This parameter is currently not accepted.
- complevelint, 0-9, default None
Specifies a compression level for data. A value of 0 or None disables compression.
- columnsdefault None
This parameter is currently not accepted, try data_columns.
- min_itemsizeint, dict, or None
Dict of columns that specify minimum str sizes.
- nan_repstr
Str to use as str nan representation.
- chunksizeint or None
Size to chunk the writing.
- expectedrowsint
Expected TOTAL row size of this table.
- dropnabool, default False, optional
Do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’.
- data_columnslist of columns, or True, default None
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
- encodingdefault None
Provide an encoding for str.
- errorsstr, default ‘strict’
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
See also
HDFStore.append_to_multiple
Append to multiple tables.
Notes
Does not check if data being appended overlaps with existing data in the table, so be careful
Examples
>>> df1 = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) >>> store = pd.HDFStore("store.h5", "w") >>> store.put("data", df1, format="table") >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=["A", "B"]) >>> store.append("data", df2) >>> store.close() A B 0 1 2 1 3 4 0 5 6 1 7 8