pandas.io.json.build_table_schema#
- pandas.io.json.build_table_schema(data, index=True, primary_key=None, version=True)[source]#
Create a Table schema from
data
.- Parameters:
- dataSeries, DataFrame
- indexbool, default True
Whether to include
data.index
in the schema.- primary_keybool or None, default True
Column names to designate as the primary key. The default None will set ‘primaryKey’ to the index level or levels if the index is unique.
- versionbool, default True
Whether to include a field pandas_version with the version of pandas that last revised the table schema. This version can be different from the installed pandas version.
- Returns:
- dict
Notes
See Table Schema for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision.
Categoricals are converted to the any dtype, and use the enum field constraint to list the allowed values. The ordered attribute is included in an ordered field.
Examples
>>> from pandas.io.json._table_schema import build_table_schema >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='D', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}