pandas.SparseDtype#
- class pandas.SparseDtype(dtype=<class 'numpy.float64'>, fill_value=None)[source]#
Dtype for data stored in
SparseArray.SparseDtypeis used as the data type forSparseArray, enabling more efficient storage of data that contains a significant number of repetitive values typically represented by a fill value. It supports any scalar dtype as the underlying data type of the non-fill values.- Parameters:
- dtypestr, ExtensionDtype, numpy.dtype, type, default numpy.float64
The dtype of the underlying array storing the non-fill value values.
- fill_valuescalar, optional
The scalar value not stored in the SparseArray. By default, this depends on
dtype.dtype
na_value
float
np.nancomplex
np.nanint
0bool
Falsedatetime64
pd.NaTtimedelta64
pd.NaTThe default value may be overridden by specifying a
fill_value.
Attributes
None
Methods
None
See also
arrays.SparseArrayThe array structure that uses SparseDtype for data representation.
Examples
>>> ser = pd.Series([1, 0, 0], dtype=pd.SparseDtype(dtype=int, fill_value=0)) >>> ser 0 1 1 0 2 0 dtype: Sparse[int64, 0] >>> ser.sparse.density 0.3333333333333333