pandas.api.types.is_int64_dtype#
- pandas.api.types.is_int64_dtype(arr_or_dtype)[source]#
Check whether the provided array or dtype is of the int64 dtype.
Deprecated since version 2.1.0: is_int64_dtype is deprecated and will be removed in a future version. Use dtype == np.int64 instead.
- Parameters:
- arr_or_dtypearray-like or dtype
The array or dtype to check.
- Returns:
- boolean
Whether or not the array or dtype is of the int64 dtype.
See also
api.types.is_float_dtype
Check whether the provided array or dtype is of a float dtype.
api.types.is_bool_dtype
Check whether the provided array or dtype is of a boolean dtype.
api.types.is_object_dtype
Check whether an array-like or dtype is of the object dtype.
numpy.int64
Numpy’s 64-bit integer type.
Notes
Depending on system architecture, the return value of is_int64_dtype( int) will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers.
Examples
>>> from pandas.api.types import is_int64_dtype >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype("int8") False >>> is_int64_dtype("Int8") False >>> is_int64_dtype(pd.Int64Dtype) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(["a", "b"])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.0])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False