pandas.notna#
- pandas.notna(obj)[source]#
- Detect non-missing values for an array-like object. - This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is - NaNin numeric arrays,- Noneor- NaNin object arrays,- NaTin datetimelike).- Parameters:
- objarray-like or object value
- Object to check for not null or non-missing values. 
 
- Returns:
- bool or array-like of bool
- For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid. 
 
 - See also - isna
- Boolean inverse of pandas.notna. 
- Series.notna
- Detect valid values in a Series. 
- DataFrame.notna
- Detect valid values in a DataFrame. 
- Index.notna
- Detect valid values in an Index. 
 - Examples - Scalar arguments (including strings) result in a scalar boolean. - >>> pd.notna("dog") True - >>> pd.notna(pd.NA) False - >>> pd.notna(np.nan) False - ndarrays result in an ndarray of booleans. - >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]]) - For indexes, an ndarray of booleans is returned. - >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[s]', freq=None) >>> pd.notna(index) array([ True, True, False, True]) - For Series and DataFrame, the same type is returned, containing booleans. - >>> df = pd.DataFrame([["ant", "bee", "cat"], ["dog", None, "fly"]]) >>> df 0 1 2 0 ant bee cat 1 dog NaN fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True - >>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool