pandas.wide_to_long#
- pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')[source]#
Unpivot a DataFrame from wide to long format.
Less flexible but more user-friendly than melt.
With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,…, B-suffix1, B-suffix2,… You specify what you want to call this suffix in the resulting long format with j (for example j=’year’)
Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names)
All remaining variables in the data frame are left intact.
- Parameters:
- dfDataFrame
The wide-format DataFrame.
- stubnamesstr or list-like
The stub name(s). The wide format variables are assumed to start with the stub names.
- istr or list-like
Column(s) to use as id variable(s).
- jstr
The name of the sub-observation variable. What you wish to name your suffix in the long format.
- sepstr, default “”
A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-’.
- suffixstr, default ‘\d+’
A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class ‘\D+’. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying suffix=’(!?one|two)’. When all suffixes are numeric, they are cast to int64/float64.
- Returns:
- DataFrame
A DataFrame that contains each stub name as a variable, with new index (i, j).
See also
melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
pivot
Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.pivot
Pivot without aggregation that can handle non-numeric data.
DataFrame.pivot_table
Generalization of pivot that can handle duplicate values for one index/column pair.
DataFrame.unstack
Pivot based on the index values instead of a column.
Notes
All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to “do the right thing” in a typical case.
Examples
>>> np.random.seed(123) >>> df = pd.DataFrame( ... { ... "A1970": {0: "a", 1: "b", 2: "c"}, ... "A1980": {0: "d", 1: "e", 2: "f"}, ... "B1970": {0: 2.5, 1: 1.2, 2: 0.7}, ... "B1980": {0: 3.2, 1: 1.3, 2: 0.1}, ... "X": dict(zip(range(3), np.random.randn(3))), ... } ... ) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1
With multiple id columns
>>> df = pd.DataFrame( ... { ... "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3], ... "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3], ... "ht1": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... "ht2": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9], ... } ... ) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> long_format = pd.wide_to_long(df, stubnames="ht", i=["famid", "birth"], j="age") >>> long_format ... ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9
Going from long back to wide just takes some creative use of unstack
>>> wide_format = long_format.unstack() >>> wide_format.columns = wide_format.columns.map("{0[0]}{0[1]}".format) >>> wide_format.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9
Less wieldy column names are also handled
>>> np.random.seed(0) >>> df = pd.DataFrame( ... { ... "A(weekly)-2010": np.random.rand(3), ... "A(weekly)-2011": np.random.rand(3), ... "B(weekly)-2010": np.random.rand(3), ... "B(weekly)-2011": np.random.rand(3), ... "X": np.random.randint(3, size=3), ... } ... ) >>> df["id"] = df.index >>> df A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2
>>> pd.wide_to_long(df, ["A(weekly)", "B(weekly)"], i="id", j="year", sep="-") ... X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895
If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long
>>> stubnames = sorted( ... set( ... [ ... match[0] ... for match in df.columns.str.findall(r"[A-B]\(.*\)").values ... if match != [] ... ] ... ) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)']
All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes.
>>> df = pd.DataFrame( ... { ... "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3], ... "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3], ... "ht_one": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... "ht_two": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9], ... } ... ) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9
>>> long_format = pd.wide_to_long( ... df, stubnames="ht", i=["famid", "birth"], j="age", sep="_", suffix=r"\w+" ... ) >>> long_format ... ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9